1,970 research outputs found
Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU
A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to
solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses
binary and integer encoding and genetic operators adapted to this problem. Our
GA is improved by generated initial solution with hubs located at middle nodes.
The obtained experimental results are compared with the best known solutions on
all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own
randomly generated instances up to 6000 nodes. Our approach outperforms most
well-known heuristics in terms of solution quality and time execution and it
allows hitherto unsolved problems to be solved
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
Tess as the archetype of the earth goddess in Hardy's Tess of the D'Urbervilles
Chapter I sees Thomas Hardy's novels, especially Tess of the D’Urbervilles, as tragedies which lie outside the mainstream of the literary thought of his century. The rise of the English Novel was largely influenced by John Locke's philosophy of free will and by his concept of "tabula rasa." Hardy has approached the problem of man's development from a different point of view. Through Darwin's theory of evolution it became evident that man had a genetic inheritance which preceeded the later manifestations of his free will. This genetic potential has the ingredients of a tragic development, because it has many of the implications of the classical concept of Divine Providence. This view led again to the recognition of archetypal patterns which were preserved in mythology and in classical literature. Hardy used these archetypal images again, not according to the classical concept of tragedy, but according to a linear development where time governs the theme and structure of the novel. We will see that time, as Hardy understood it, has archetypal significance as well. We recognize this when we define the meaning of the archetype and its genealogy
Lessons from building an automated pre-departure sequencer for airports
Commercial airports are under increasing pressure to comply with the Eurocontrol collaborative decision making (CDM) initiative, to ensure that information is passed between stakeholders, integrate automated decision support or make predictions. These systems can also aid effective operations beyond the airport by communicating scheduling decisions to other relevant parties, such as Eurocontrol, for passing on to downstream airports and enabling overall airspace improvements. One of the major CDM components is aimed at producing the target take-off times and target startup-approval times, i.e. scheduling when the aircraft should push back from the gates and start their engines and when they will take off. For medium-sized airports, a common choice for this is a “pre-departure sequencer” (PDS). In this paper, we describe the design and requirements challenges which arose during our development of a PDS system for medium sized international airports. Firstly, the scheduling problem is highly dynamic and event driven. Secondly, it is important to end-users that the system be predictable and, as far as possible, transparent in its operation, with decisions that can be explained. Thirdly, users can override decisions, and this information has to be taken into account. Finally, it is important that the system is as fair as possible for all users of the airport, and the interpretation of this is considered here. Together, these factors have influenced the design of the PDS system which has been built to work within an existing large system which is being used at many airport
Minimizing patients total clinical condition deterioration in operating theatre departments.
The operating theatre is the most crucial and costly department in a hospital due to its expensive resources and high patient admission rate. Efficiently allocating operating theatre resources to patients provides hospital management with better utilization and patient flow. In this paper, we tackle both tactical and operational planning over short-term to medium-term horizons. The main goal is to determine an allocation of blocks of time on each day to surgical specialties while also assigning each patient a day and an operating room for surgery. To create a balance between improving patients welfare and satisfying the expectations of hospital administrators, we propose six novel deterioration rates to evaluate patients total clinical condition deterioration. Each deterioration rate is defined as a function of the clinical priorities of patients, their waiting times, and their due dates. To optimize the objective functions, we present mixed integer programming (MIP) models and two dynamic programming based heuristics. Computational experiments have been conducted on a novel well-designed and carefully chosen benchmark dataset, which simulates realistic-sized instances. The results demonstrate the capability of the MIP models in finding excellent solutions (maximum average gap of 4.71% across all instances and objective functions), though, requiring large run-times. The heuristic algorithms provide a time-efficient alternative, where high quality solutions can be found in under a minute. We also analyse each objective function's ability in generating high quality solutions from different perspectives such as patients waiting times, the number of scheduled patients, and operating rooms utilization rates. We provide managerial insights to the decision makers in cases where their intention is to meet KPIs and/or maintaining trade-offs between patients and administrators expectations, more fair assignments, or ensuring that the most urgent patients are taken care of first
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
In a green tree
The poems of this thesis, although not in chronological order, make evident two distinct periods of development. The earlier poems are characterized by the short line and a freedom from strict regularity of stanza length, rhyme scheme and metric pattern. A larger group of poems represent the period during which the poet attempts to formalize her verse by imposing various disciplines on her writing style and, at the same time, on the idea of the poem. The poetry in both periods has as its primary objective the expression of ideas and observations with clarity. There are several poems which comment on the human condition and others which are descriptive. This thesis has no unifying theme. The title was derived from the poem which represents, to the poet, a major effort and accomplishment made during the two years of writing represented
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
