232 research outputs found

    Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi

    Get PDF
    A novel large multigene family was recently identified in the human pathogen Trypanosoma cruzi, causative agent of Chagas disease, and corresponds to ∼6% of the parasite diploid genome. The predicted gene products, mucin-associated surface proteins (MASPs), are characterized by highly conserved N- and C-terminal domains and a strikingly variable and repetitive central region. We report here an analysis of the genomic organization and expression profile of masp genes. Masps are not randomly distributed throughout the genome but instead are clustered with genes encoding mucin and other surface protein families. Masp transcripts vary in size, are preferentially expressed during the trypomastigote stage and contain highly conserved 5′ and 3′ untranslated regions. A sequence analysis of a trypomastigote cDNA library reveals the expression of multiple masp variants with a bias towards a particular masp subgroup. Immunofluorescence assays using antibodies generated against a MASP peptide reveals that the expression of particular MASPs at the cell membrane is limited to subsets of the parasite population. Western blots of phosphatidylinositol-specific phospholipase C (PI-PLC)-treated parasites suggest that MASP may be GPI-anchored and shed into the medium culture, thus contributing to the large repertoire of parasite polypeptides that are exposed to the host immune system

    The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology

    Get PDF
    The cell cycle is central to understanding fundamental biology of Leishmania, a group of human-infective protozoan parasites. Leishmania have two main life cycle morphologies: the intracellular amastigote in the mammalian host and the promastigote in the fly. We have produced the first comprehensive and quantitative description of a Leishmania promastigote cell cycle taking a morphometric approach to position any cell within the cell cycle based on its length and DNA content. We describe timings of cell cycle phases and rates of morphological changes; kinetoplast and nucleus S phase, division and position, cell body growth and morphology changes, flagellum growth and basal body duplication. We have shown that Leishmania mexicana undergoes large changes in morphology through the cell cycle and that the wide range of morphologies present in cultures during exponential growth represent different cell cycle stages. We also show promastigote flagellum growth occurs over multiple cell cycles. There are clear implications for the mechanisms of flagellum length regulation, life cycle stage differentiation and trypanosomatid division in general. This data set therefore provides a platform which will be of use for post-genomic analyses of Leishmania cell biology in relation to differentiation and infection

    The Evolution of Amastin Surface Glycoproteins in Trypanosomatid Parasites

    Get PDF
    Amastin is a transmembrane glycoprotein found on the cell surfaces of trypanosomatid parasites. Encoded by a large, diverse gene family, amastin was initially described from the intracellular, amastigote stage of Trypanosoma cruzi and Leishmania donovani. Genome sequences have subsequently shown that the amastin repertoire is much larger in Leishmania relative to Trypanosoma. However, it is not known when this expansion occurred, whether it is associated with the origins of Leishmania and vertebrate parasitism itself, or prior to this. To examine the timing of amastin diversification, as well as the evolutionary mechanisms regulating gene repertoire and sequence diversity, this study sequenced the genomic regions containing amastin loci from two related insect parasites (Leptomonas seymouri and Crithidia sp.) and estimated a phylogeny for these and other amastin sequences. The phylogeny shows that amastin includes four subfamilies with distinct genomic positions, secondary structures, and evolution, which were already differentiated in the ancestral trypanosomatid. Diversification in Leishmania was initiated from a single ancestral locus on chromosome 34, with rapid derivation of novel loci through transposition and accelerated sequence divergence. This is absent from related organisms showing that diversification occurred after the origin of Leishmania. These results describe a substantial elaboration of amastin repertoire directly associated with the origin of Leishmania, suggesting that some amastin genes evolved novel functions crucial to cell function in leishmanial parasites after the acquisition of a vertebrate host

    Death with functioning kidney transplant: an obituarial analysis

    Get PDF
    Death with a functioning kidney graft (DWFG) is now a major cause of graft loss after renal transplantation, occurring in up to 40% of cases. Its occurrence provides insight into the medical care of subjects with a functioning kidney transplant. In this study, we used the time to DWFG as an endpoint, to test whether improved medical care has contributed to better kidney transplant outcomes. We used single-center data from the Milwaukee Regional Medical Center and Froedtert Hospital, on kidney-only transplants from 1969 through 2005. A total of 3,157 kidney transplants were done at our center during this time. There were 714 deaths with functioning kidney. We also recorded the major causes of DWFG over the time period from 1969 through 2005 divided into 3 epochs. The data were analyzed as a serial collection of yearly obituaries. The time to DWFG has increased to 10 years despite a 20-year increase in the mean age of transplant recipients over the same time period. Better pre-transplant evaluation, improved treatments for hypertension and hyperlipidemia, improved management of acute myocardial infarction, superior immunosuppressive protocols and better prophylaxis and treatment of infectious diseases have all likely contributed to this trend

    Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism

    Get PDF
    The evolution of parasitism is a recurrent event in the history of life and a core problem in evolutionary biology. Trypanosomatids are important parasites and include the human pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., which in humans cause African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. Genome comparison between trypanosomatids reveals that these parasites have evolved specialized cell-surface protein families, overlaid on a well-conserved cell template. Understanding how these features evolved and which ones are specifically associated with parasitism requires comparison with related non-parasites. We have produced genome sequences for Bodo saltans, the closest known non-parasitic relative of trypanosomatids, and a second bodonid, Trypanoplasma borreli. Here we show how genomic reduction and innovation contributed to the character of trypanosomatid genomes. We show that gene loss has “streamlined” trypanosomatid genomes, particularly with respect to macromolecular degradation and ion transport, but consistent with a widespread loss of functional redundancy, while adaptive radiations of gene families involved in membrane function provide the principal innovations in trypanosomatid evolution. Gene gain and loss continued during trypanosomatid diversification, resulting in the asymmetric assortment of ancestral characters such as peptidases between Trypanosoma and Leishmania, genomic differences that were subsequently amplified by lineage-specific innovations after divergence. Finally, we show how species-specific, cell-surface gene families (DGF-1 and PSA) with no apparent structural similarity are independent derivations of a common ancestral form, which we call “bodonin.” This new evidence defines the parasitic innovations of trypanosomatid genomes, revealing how a free-living phagotroph became adapted to exploiting hostile host environments

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations

    Get PDF
    Nuclear transcription of Trypanosoma brucei displays unusual features. Most protein-coding genes are organized in large directional gene clusters, which are transcribed polycistronically by RNA polymerase II (pol II) with subsequent processing to generate mature mRNA. Here, we describe the identification and characterization of two trypanosome homologues of transcription elongation factor TFIIS (TbTFIIS1 and TbTFIIS2-1). TFIIS has been shown to aid transcription elongation by relieving arrested pol II. Our phylogenetic analysis demonstrated the existence of four independent TFIIS expansions across eukaryotes. While TbTFIIS1 contains only the canonical domains II and III, the N-terminus of TbTFIIS2-1 contains a PWWP domain and a domain I. TbTFIIS1 and TbTFIIS2-1 are expressed in procyclic and bloodstream form cells and localize to the nucleus in similar, but distinct, punctate patterns throughout the cell cycle. Neither TFIIS protein was enriched in the major pol II sites of spliced-leader RNA transcription. Single RNA interference (RNAi)-mediated knock-down and knockout showed that neither protein is essential. Double knock-down, however, impaired growth. Repetitive failure to generate a double knockout of TbTFIIS1 and TbTFIIS2-1 strongly suggests synthetical lethality and thus an essential function shared by the two proteins in trypanosome growth

    Transcript Expression Analysis of Putative Trypanosoma brucei GPI-Anchored Surface Proteins during Development in the Tsetse and Mammalian Hosts

    Get PDF
    Human African Trypanosomiasis is a devastating disease caused by the parasite Trypanosoma brucei. Trypanosomes live extracellularly in both the tsetse fly and the mammal. Trypanosome surface proteins can directly interact with the host environment, allowing parasites to effectively establish and maintain infections. Glycosylphosphatidylinositol (GPI) anchoring is a common posttranslational modification associated with eukaryotic surface proteins. In T. brucei, three GPI-anchored major surface proteins have been identified: variant surface glycoproteins (VSGs), procyclic acidic repetitive protein (PARP or procyclins), and brucei alanine rich proteins (BARP). The objective of this study was to select genes encoding predicted GPI-anchored proteins with unknown function(s) from the T. brucei genome and characterize the expression profile of a subset during cyclical development in the tsetse and mammalian hosts. An initial in silico screen of putative T. brucei proteins by Big PI algorithm identified 163 predicted GPI-anchored proteins, 106 of which had no known functions. Application of a second GPI-anchor prediction algorithm (FragAnchor), signal peptide and trans-membrane domain prediction software resulted in the identification of 25 putative hypothetical proteins. Eighty-one gene products with hypothetical functions were analyzed for stage-regulated expression using semi-quantitative RT-PCR. The expression of most of these genes were found to be upregulated in trypanosomes infecting tsetse salivary gland and proventriculus tissues, and 38% were specifically expressed only by parasites infecting salivary gland tissues. Transcripts for all of the genes specifically expressed in salivary glands were also detected in mammalian infective metacyclic trypomastigotes, suggesting a possible role for these putative proteins in invasion and/or establishment processes in the mammalian host. These results represent the first large-scale report of the differential expression of unknown genes encoding predicted T. brucei surface proteins during the complete developmental cycle. This knowledge may form the foundation for the development of future novel transmission blocking strategies against metacyclic parasites

    Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum

    Get PDF
    Antimonials remain the first line drug against the protozoan parasite Leishmania but their efficacy is threatened by resistance. We carried out a RNA expression profiling analysis comparing an antimony-sensitive and -resistant (Sb2000.1) strain of Leishmania infantum using whole-genome 70-mer oligonucleotide microarrays. Several genes were differentially expressed between the two strains, several of which were found to be physically linked in the genome. MRPA, an ATP-binding cassette (ABC) gene known to be involved in antimony resistance, was overexpressed in the antimony-resistant mutant along with three other tandemly linked genes on chromosome 23. This four gene locus was flanked by 1.4 kb repeated sequences from which an extrachromosomal circular amplicon was generated in the resistant cells. Interestingly, gene expression modulation of entire chromosomes occurred in the antimony-resistant mutant. Southern blots analyses and comparative genomic hybridizations revealed that this was either due to the presence of supernumerary chromosomes or to the loss of one chromosome. Leishmania parasites with haploid chromosomes were viable. Changes in copy number for some of these chromosomes were confirmed in another antimony-resistant strain. Selection of a partial revertant line correlated antimomy resistance levels and the copy number of aneuploid chromosomes, suggesting a putative link between aneuploidy and drug resistance in Leishmania
    corecore