80 research outputs found

    Early diagnosis of oesophageal cancer.

    Get PDF
    Squamous cell carcinoma and adenocarcinoma of the oesophagus are cancers that develop from distinct epithelial sub-types; however, they are both related to chronic inflammation of differing aetiologies. Inflammation leads to somatically inherited genetic mutations altering control of the cell cycle, DNA replication and apoptosis, which together result in autonomous and uncontrolled proliferation. These cancers have often metastasised to lymph nodes and distant organs before symptomatic presentation and therefore carry a poor prognosis. It is therefore vital to diagnose oesophageal cancer at an early stage, before the development of symptoms, when treatment can dramatically improve prognosis. Understanding the pathogenesis of these cancers is vital to guide early diagnostic strategies

    Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus

    Get PDF
    abstract: Surveillance of Barrett’s oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time. Clonal expansions are rare, being detected once every 36.8 patient years, and growing at an average rate of 1.58 cm[superscript 2] (95% CI: 0.09–4.06) per year, often involving the p16 locus. This suggests a lack of strong clonal selection in Barrett’s and that the malignant potential of ‘benign’ Barrett’s lesions is predetermined, with important implications for surveillance programs.The final version of this article, as published in Nature Communications, can be viewed online at: https://www.nature.com/articles/ncomms1215

    Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mortality is high in patients with esophageal carcinoma as tumors are rarely detected before the disease has progressed to an advanced stage. Here, we sought to isolate cell-free DNA released into the plasma of patients with esophageal carcinoma, to analyze copy number variations of marker genes in the search for early detection of tumor progression.</p> <p>Methods</p> <p>Plasma of 41 patients with esophageal carcinoma was prospectively collected before tumor resection and chemotherapy. Our dataset resulted heterogeneous for clinical data, resembling the characteristics of the tumor. DNA from the plasma was extracted to analyze copy number variations of the <it>erbB2 </it>gene using real-time PCR assays.</p> <p>Results</p> <p>The real-time PCR assays for <it>erbB2 </it>gene showed significant (<it>P </it>= 0.001) copy number variations in the plasma of patients with esophageal carcinoma, as compared to healthy controls with high sensitivity (80%) and specificity (95%). These variations in <it>erbB2 </it>were negatively correlated to the progression free survival of these patients (<it>P </it>= 0.03), and revealed a further risk category stratification of patients with low VEGF expression levels.</p> <p>Conclusion</p> <p>The copy number variation of <it>erbB2 </it>gene from plasma can be used as prognostic marker for early detection of patients at risk of worse clinical outcome in esophageal cancer.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    2015 update of the evidence base:World Allergy Organization anaphylaxis guidelines

    Get PDF
    The World Allergy Organization (WAO) Guidelines for the assessment and management of anaphylaxis provide a unique global perspective on this increasingly common, potentially life-threatening disease. Recommendations made in the original WAO Anaphylaxis Guidelines remain clinically valid and relevant, and are a widely accessed and frequently cited resource. In this 2015 update of the evidence supporting recommendations in the Guidelines, new information based on anaphylaxis publications from January 2014 through mid- 2015 is summarized. Advances in epidemiology, diagnosis, and management in healthcare and community settings are highlighted. Additionally, new information about patient factors that increase the risk of severe and/or fatal anaphylaxis and patient co-factors that amplify anaphylactic episodes is presented and new information about anaphylaxis triggers and confirmation of triggers to facilitate specific trigger avoidance and immunomodulation is reviewed. The update includes tables summarizing important advances in anaphylaxis research. Keywords: Anaphylaxis, Epinephrine, Auto-injector, Food allergy, Stinging insect venom allergy, Drug allergy, Latex allergy, Exercise-induced anaphylaxis, Systemic allergic reaction, Adrenalin

    Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease

    Get PDF
    Abstract: Very-early-onset inflammatory bowel disease (VEO-IBD) is a heterogeneous phenotype associated with a spectrum of rare Mendelian disorders. Here, we perform whole-exome-sequencing and genome-wide genotyping in 145 patients (median age-at-diagnosis of 3.5 years), in whom no Mendelian disorders were clinically suspected. In five patients we detect a primary immunodeficiency or enteropathy, with clinical consequences (XIAP, CYBA, SH2D1A, PCSK1). We also present a case study of a VEO-IBD patient with a mosaic de novo, pathogenic allele in CYBB. The mutation is present in ~70% of phagocytes and sufficient to result in defective bacterial handling but not life-threatening infections. Finally, we show that VEO-IBD patients have, on average, higher IBD polygenic risk scores than population controls (99 patients and 18,780 controls; P < 4 × 10−10), and replicate this finding in an independent cohort of VEO-IBD cases and controls (117 patients and 2,603 controls; P < 5 × 10−10). This discovery indicates that a polygenic component operates in VEO-IBD pathogenesis

    Barrett's esophagus.

    No full text
    Barrett's esophagus is an important step in the pathway to esophageal adenocarcinoma. Since most patients with Barrett's esophagus are undiagnosed and patients present with advanced adenocarcinoma de novo, prognosis for this disease remains poor. To identify those people with Barrett's esophagus who are at particular risk many new technologies are being developed. In association with these advances in risk stratification, progress is being made in the endoscopic treatment of Barrett's. Chemoprevention is also an area of interest and trials are underway

    Barrett's esophagus.

    No full text
    Barrett's esophagus is an important step in the pathway to esophageal adenocarcinoma. Since most patients with Barrett's esophagus are undiagnosed and patients present with advanced adenocarcinoma de novo, prognosis for this disease remains poor. To identify those people with Barrett's esophagus who are at particular risk many new technologies are being developed. In association with these advances in risk stratification, progress is being made in the endoscopic treatment of Barrett's. Chemoprevention is also an area of interest and trials are underway
    corecore