857 research outputs found

    Tigecycline use in serious nosocomial infections: a drug use evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tigecycline is a novel antibiotic with activity against multidrug resistant bacteria. The aim of this study was to assess the efficacy of tigecycline use in serious hospital-acquired infections (HAI)</p> <p>Case presentation</p> <p>Prospective observational study of tigecycline use was conducted in a 1500 beds university hospital. From January 1, 2007 and January 31, 2010, 207 pts were treated with tigecycline for the following indications: intra-abdominal, pneumonia, bloodstream and complicated skin and soft tissue infections and febrile neutropenia. The therapy was targeted in 130/207 (63%) and empirical in 77/207 (37%) patients. All bacteria treated were susceptible to tigecycline. Median duration of tigecycline therapy was 13 days (range, 6-28). Clinical success was obtained in 151/207 (73%) cases, with the highest success rate recorded in intra-abdominal infections [81/99 (82%)]. Microbiological success was achieved in 100/129 (78%) treated patients. Adverse clinical events were seen in 16/207 patients (7.7%):</p> <p>Conclusions</p> <p>Considering the lack of data on tigecycline for critically ill patients, we think that the reported data of our clinical experience despite some limitations can be useful for clinicians.</p

    Efficacy and safety of tigecycline monotherapy vs. imipenem/cilastatin in Chinese patients with complicated intra-abdominal infections: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tigecycline, a first-in-class broad-spectrum glycylcycline antibiotic, has broad-spectrum in vitro activity against bacteria commonly encountered in complicated intra-abdominal infections (cIAIs), including aerobic and facultative Gram-positive and Gram-negative bacteria and anaerobic bacteria. In the current trial, tigecycline was evaluated for safety and efficacy vs. imipenem/cilastatin in hospitalized Chinese patients with cIAIs.</p> <p>Methods</p> <p>In this phase 3, multicenter, open-label study, patients were randomly assigned to receive IV tigecycline or imipenem/cilastatin for ≤2 weeks. The primary efficacy endpoints were clinical response at the test-of-cure visit (12-37 days after therapy) for the microbiologic modified intent-to-treat and microbiologically evaluable populations. Because the study was not powered to demonstrate non-inferiority between tigecycline and imipenem/cilastatin, no formal statistical analysis was performed. Two-sided 95% confidence intervals (CIs) were calculated for the response rates in each treatment group and for differences between treatment groups for descriptive purposes.</p> <p>Results</p> <p>One hundred ninety-nine patients received ≥1 dose of study drug and comprised the modified intent-to-treat population. In the microbiologically evaluable population, 86.5% (45 of 52) of tigecycline- and 97.9% (47 of 48) of imipenem/cilastatin-treated patients were cured at the test-of-cure assessment (12-37 days after therapy); in the microbiologic modified intent-to-treat population, cure rates were 81.7% (49 of 60) and 90.9% (50 of 55), respectively. The overall incidence of treatment-emergent adverse events was 80.4% for tigecycline vs. 53.9% after imipenem/cilastatin therapy (<it>P </it>< 0.001), primarily due to gastrointestinal-related events, especially nausea (21.6% vs. 3.9%; <it>P </it>< 0.001) and vomiting (12.4% vs. 2.0%; <it>P </it>= 0.005).</p> <p>Conclusions</p> <p>Clinical cure rates for tigecycline were consistent with those found in global cIAI studies. The overall safety profile was also consistent with that observed in global studies of tigecycline for treatment of cIAI, as well as that observed in analyses of Chinese patients in those studies; no novel trends were observed.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00136201</p

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore