71 research outputs found

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Darolutamide does not interfere with OATP-mediated uptake of docetaxel

    Get PDF
    The addition of darolutamide, an androgen receptor signalling inhibitor, to therapy with docetaxel has recently been approved as a strategy to treat metastatic prostate cancer. OATP1B3 is an SLC transporter that is highly expressed in prostate cancer and is responsible for the accumulation of substrates, including docetaxel, into tumours. Given that darolutamide inhibits OATP1B3 in vitro, we sought to characterise the impact of darolutamide on docetaxel pharmacokinetics. We investigated the influence of darolutamide on OATP1B3 transport using in vitro and in vivo models. We assessed the impact of darolutamide on the tumour accumulation of docetaxel in a patient-derived xenograft (PDX) model and on an OATP1B biomarker in patients. Darolutamide inhibited OATP1B3 in vitro at concentrations higher than the reported Cmax. Consistent with these findings, in vivo studies revealed that darolutamide does not influence the pharmacokinetics of Oatp1b substrates, including docetaxel. Docetaxel accumulation in PDX tumours was not decreased in the presence of darolutamide. Metastatic prostate cancer patients had similar levels of OATP1B biomarkers, regardless of treatment with darolutamide. Consistent with a low potential to inhibit OATP1B3-mediated transport in vitro, darolutamide does not significantly impede the transport of Oatp1b substrates in vivo or in patients. Our findings support combined treatment with docetaxel and darolutamide, as no OATP1B3 transporter based drug–drug interaction was identified

    Perspectives of patients with type 1 or insulin-treated type 2 diabetes on self-monitoring of blood glucose: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-monitoring of blood glucose (SMBG), including self-regulation, is an important tool to achieve good glycemic control. However, many patients measure their glucose concentrations less often than is recommended. This study investigates patients' perspectives of SMBG and all relevant aspects influencing SMBG in patients with type 1 and insulin-treated type 2 diabetes.</p> <p>Methods</p> <p>In depth interviews were conducted with 13 patients with type 1 diabetes from an outpatient clinic and 15 patients with type 2 diabetes from general practices. All interviews were transcribed verbatim and analyzed using the Grounded Theory approach.</p> <p>Results</p> <p>A wide variety of SMBG was encountered. Perceptions, goals of SMBG and personal and contextual factors were identified, influencing the respondents' perspective of SMBG, and leading to this variety. Respondents experienced a discrepancy between their own and the professionals' perceptions and goals. Respondents' perception of SMBG ranged along a continuum from 'friend' to 'foe'. With respect to the goals, the respondents experienced tension between achieving good glycemic control and quality of life, and deliberately made their own choices. The performance of SMBG was tailored to their perceptions and personal goals. Personal and contextual factors such as hypo- or hyper (un)awareness, knowledge, and contact with professionals acted as either facilitating factors or as barriers to SMBG, depending on the respondents' perspective. A SMBG model was developed providing a representation of the factors and their interrelations.</p> <p>Respondents with type 1 diabetes seemed more resigned to their situation and SMBG was more integrated into their lives.</p> <p>Conclusions</p> <p>From the patients' perspective, professionals positively present SMBG as a 'friend' in order to achieve strict glycemic control. Whereas patients can also perceive SMBG as a 'foe'. They primarily seek a personal balance between achieving glycemic control and quality of life, leading them to deliberately make other choices regarding SMBG performance than was recommended. Gaining insight and discussing all factors affecting SMBG will help professionals and patients come to mutually agreed goals and to tailor the performance of SMBG to the individual patient. This should result in a more optimal use of SMBG, an improved quality of life, and improved clinical parameters.</p

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    The PLATO 2.0 mission

    Get PDF
    PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Resource use dynamics and interactions in the tropics: Scaling up in space and time

    No full text
    We discuss the temporal and spatial dynamics of nutrient resources and water within cropping and livestock systems, their interactions and those with other resources such as labour. Short-term dynamics (within season) revolve around nutrient availability and losses as a function of soil moisture dynamics. Longer-term effects (multiple seasons and years) are related to residual effects of crop management in successive seasons and to changes in soil organic matter contents. Spatial patterns of resource use are consistent across different tropical farming systems. Farmers preferentially allocate manure, mineral fertilizers and labour to fields close to the homestead, resulting in strong negative soil fertility gradients away from the homestead. Livestock are the central means of concentration of nutrients within farming systems, resulting in their inequitable redistribution from common lands and poorer households to richer households. Productivity gains achieved by concentration on home plots are at the expense of long-term declining productivity on remote fields. Restricted availability of inputs leads to a form of self-organization resulting in repeating patterns of farm organization that are recognisable across sub-Saharan Africa. Principles for enhancing allocation efficiency of scarce resources are required that address the dynamics of interacting temporal and spatial scales. Managed variability that creates gradients of soil fertility can have major effects on resource use efficiency of both nutrients and water, necessitating analysis of trade-offs at farm scale. Investment decisions of farming families are shaped through complex interactions among competing demands for investment of cash and labour within and beyond farm boundaries. Combinations of socio-economic and agro-ecological conditions can provide windows of opportunity in both time and space that favour investment in particular forms of management. Past research provides a vast array of technologies to improve agricultural production, and understanding of the underlying processes. A research framework is proposed representing farm systems as sets of interacting components. This framework can be used ex-ante, to assist in targeting technologies to specific types of farmers, and for identification of more appropriate technologies. It can be used to explore short and long-term trade-offs of management strategies and to evaluate effects of policy on farms varying in resource endowmen
    corecore