35 research outputs found

    Swiss Psychiatrists Beliefs and Attitudes about Cannabis Risks in Psychiatric Patients: Ideologically Determined or Evidence-based?

    Get PDF
    The objective of this survey was to assess the beliefs of Swiss psychiatrists about the risks associated with cannabis, and to assess their prohibitive attitudes toward their patients. Eighty-two doctors agreed to fill-up the questionnaire. Cluster analysis retained a 3-cluster solution. Cluster 1: "Prohibitionists” believed that cannabis could induce and trigger all forms of psychiatric disorder, and showed a highly prohibitive attitude. Cluster 2: "Causalists” believed that schizophrenia, but not other psychiatric disorders, could be induced and triggered. Cluster 3: "Prudent liberals” did not believe that psychiatric disorders could be induced by cannabis, and were generally less prohibitiv

    Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 kilometers of the surface of Venus, driven by the power of the wind. The Zephyr Venus Landsailer is a science mission concept for exploring the surface of Venus with a mobility and science capability roughly comparable to the Mars Exploration Rovers (MER) mission, but using the winds of the thick atmosphere of Venus for propulsion. It would explore the plains of Venus in the year 2025, near the Venera 10 landing site, where wind velocities in the range of 80 to 120 centimeters per second (cm/s) were measured by earlier Soviet landing missions. These winds are harnessed by a large wing/sail which would also carry the solar cells to generate power. At around 250 kilograms (kg), Zephyr would carry an 8 meter tall airfoil sail (12 square meters area), 25 kg of science equipment (mineralogy, grinder, and weather instruments) and return 2 gigabytes of science over a 30 day mission. Due to the extreme temperatures (450 degrees Centigrade) and pressures (90 bar) on Venus, Zephyr would have only basic control systems (based on high temperature silicon carbide (SiC)electronics) and actuators. Control would come from an orbiter which is in turn controlled from Earth. Due to the time delay from the Earth a robust control system would need to exist on the orbiter to keep Zephyr on course. Data return and control would be made using a 250 megahertz link with the orbiter with a maximum data rate of 2 kilobits per second. At the minimal wind speed required for mobility of 35 cm/s, the vehicle move at a slow but steady 4 cm/s by positioning the airfoil and use of one wheel that is steered for pointing control. Navigation commands from the orbiter will be based upon navigation cameras, simple accelerometers and stability sensors; Zephyr's stability is robust, using a wide wheel base along with controls to "feather" or "luff" the airfoil and apply brakes to stop the vehicle in the case of unexpected conditions. This would be the science gathering configuration. The vehicle itself would need to be made from titanium (Ti) as the structural material, with a corrosion-barrier overcoating due to extreme temperatures on the surface

    Advanced Lithium Ion Venus Explorer (ALIVE)

    Get PDF
    The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery (500M)orNewFrontiers(500M) or New Frontiers (750M to 780M)classmission.HistoricSovietVenuslandershaveonlylastedontheorderof2hoursintheextremeVenusenvironment:temperaturesof460degreesCentigradeandpressuresof93bar.Longerdurationmissionshavebeenstudiedusingplutoniumpoweredsystemstooperateandcoollandersforuptoayear.However,theplutoniumloadisverylarge.ThisNIACstudysoughttostillprovidepowerandcoolingbutwithouttheplutonium.Batteriesarefartooheavybutasystemwhichusestheatmosphere(primarilycarbondioxide)andononboardfueltopowerapowergenerationandcoolingsystemwassought.TheresulingdesignwastheAdvancedLongLifeLanderInvestigatingtheVenusEnvironment(ALIVE)Spacecraft(S/C)whichburnslithium(Li)withtheCO2atmospheretoheataDuplexStirlingtopowerandcoolthelanderfora5dayduration(untiltheLiisexhausted).WhileitdoesnotlastyearsachemicalpoweredsystemsurvivingdayseliminatesthecostassociatedwithutilizingaflybyrelayS/Candallowsacontinuouslowdataratedirecttoearth(DTE)linkinthisinstancefromtheOvdaRegioofVenus.Thefivedaycollectiontimeprovidedbythechemicalpowersystemsalsoenablessciencepersonnelonearthtointeractandretargetsciencesomethingnotpossiblewithanapproximately2hourspacecraftlifetime.Italsoallowsforcontingencyoperationsdirectedbytheground(reducedrisk).ThesciencepackagewasbasedonthatenvisionedbytheVenusIntrepidTesseraLander(VITaL)DecadalSurveyStudy.TheLiBurnerwithinthelongdurationpowersystemcreatesapproximately14000Wofheat.This1300degreeCentigradeheatusingLiinthebottom"ballast"tankismeltedtoliquidbytheVenustemperature,drawnintoafurnacebyawickandburnedwithatmosphericCO2.TheLicarbonateexhaustisliquidat1300degreesCentigradeandbeingdenserthanLidrainsintothetheLitankandsolidifies.Sincetheexhaustproductisadenseliquidno"chimney"isrequiredwhichconservestheheatforthestirlingpowerconvertor.TheDuplexStirlingprovidesabout300Wofpowerandremovesabout300Wofheatfromtheavionicsandheatthatleaksintothe1barinsulatedpayloadpressurevesselkeptat25degreesCentigrade.TheNaKradiatorisruntothetopofthedragflap.TheALIVEvehicleiscarriedtoVenusviaanAtlas411launchvehicle(LV)withaC3of7km2/s2.AnAeroshell,derivedfromtheGenesismission,enablesadirectentryintotheatmosphereofVenus(10degreesCentigrade,40gmax)and6m/sforlanding(44g)usingadragring.Forsurfacescienceandcommunication,a100WRF(WebExRecordingFormat),XBand0.6meterpointableDTE(DirecttoEarth)antennaprovides2kbps(kilobitspersecond)toDSN(DeepSpaceNetwork)34meterantennaclusters.Table1.1summarizesthetopleveldetailsofeachsubsystemthatwasincorporatedintothedesign.CostestimatesoftheALIVEmissionshowitatapproximately780M) class mission. Historic Soviet Venus landers have only lasted on the order of 2 hours in the extreme Venus environment:temperatures of 460 degrees Centigrade and pressures of 93 bar. Longer duration missions have been studied using plutonium powered systems to operate and cool landers for up to a year. However, the plutonium load is very large. This NIAC study sought to still provide power and cooling but without the plutonium. Batteries are far too heavy but a system which uses the atmosphere (primarily carbon dioxide) and on on-board fuel to power a power generation and cooling system was sought. The resuling design was the Advanced Long-Life Lander Investigating the Venus Environment (ALIVE) Spacecraft (S/C) which burns lithium (Li) with the CO2 atmosphere to heat a Duplex Stirling to power and cool the lander for a 5-day duration (until the Li is exhausted). While it does not last years a chemical powered system surviving days eliminates the cost associated with utilizing a flyby relay S/C and allows a continuous low data rate direct to earth (DTE) link in this instance from the Ovda Regio of Venus. The five-day collection time provided by the chemical power systems also enables science personnel on earth to interact and retarget science - something not possible with an approximately 2-hour spacecraft lifetime. It also allows for contingency operations directed by the ground (reduced risk). The science package was based on that envisioned by the Venus Intrepid Tessera Lander (VITaL) Decadal Survey Study. The Li Burner within the long duration power system creates approximately 14000 W of heat. This 1300 degree Centigrade heat using Li in the bottom "ballast" tank is melted to liquid by the Venus temperature, drawn into a furnace by a wick and burned with atmospheric CO2. The Li carbonate exhaust is liquid at 1300 degrees Centigrade and being denser than Li drains into the the Li tank and solidifies. Since the exhaust product is a dense liquid no "chimney" is required which conserves the heat for the stirling power convertor. The Duplex Stirling provides about 300 W of power and removes about 300 W of heat from the avionics and heat that leaks into the 1-bar-insulated payload pressure vessel kept at 25 degrees Centigrade. The Na K radiator is run to the top of the drag flap.The ALIVE vehicle is carried to Venus via an Atlas 411 launch vehicle (LV) with a C3 of 7 km2/s2. An Aeroshell, derived from the Genesis mission, enables a direct entry into the atmosphere of Venus (-10 degrees Centigrade, 40 g max) and 6 m/s for landing (44 g) using a drag ring. For surface science and communication, a 100 WRF (WebEx Recording Format), X-Band 0.6-meter pointable DTE (Direct-to-Earth) antenna provides 2 kbps (kilobits per second) to DSN (Deep-Space Network) 34-meter antenna clusters.Table 1.1 summarizes the top-level details of each subsystem that was incorporated into the design. Cost estimates of the ALIVE mission show it at approximately 760M which puts it into the New Frontiers class.The ALIVE landed duration is only limited by the amount of Li which can be carried by the lander. Further studies are needed to investigate how additional mass can be carried, perhaps by a larger launcher and larger aeroshell

    In COVID-19 Health Messaging, Loss Framing Increases Anxiety with Little-to-No Concomitant Benefits: Experimental Evidence from 84 Countries

    Get PDF
    The COVID-19 pandemic (and its aftermath) highlights a critical need to communicate health information effectively to the global public. Given that subtle differences in information framing can have meaningful effects on behavior, behavioral science research highlights a pressing question: Is it more effective to frame COVID-19 health messages in terms of potential losses (e.g., "If you do not practice these steps, you can endanger yourself and others") or potential gains (e.g., "If you practice these steps, you can protect yourself and others")? Collecting data in 48 languages from 15,929 participants in 84 countries, we experimentally tested the effects of message framing on COVID-19-related judgments, intentions, and feelings. Loss- (vs. gain-) framed messages increased self-reported anxiety among participants cross-nationally with little-to-no impact on policy attitudes, behavioral intentions, or information seeking relevant to pandemic risks. These results were consistent across 84 countries, three variations of the message framing wording, and 560 data processing and analytic choices. Thus, results provide an empirical answer to a global communication question and highlight the emotional toll of loss-framed messages. Critically, this work demonstrates the importance of considering unintended affective consequences when evaluating nudge-style interventions

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Erratum: Author Correction: A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic (Nature human behaviour (2021) 5 8 (1089-1110))

    Get PDF

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Rezension zum Sammelband Sprachlich-literarische »Aggregatzustände« im Japanischen: Europäische Japan-Diskurse 1998-2018

    No full text
    In der vorliegenden Rezension soll der 2020 im be.bra wissenschaft verlag, Berlin, erschienene Sammelband Sprachlich-literarische literarische »Aggregatzustände« im Japanischen: Europäische Japan-Diskurse 1998 – 2018 näher besprochen werden. Neben der Herausarbeitung der Hauptargumentationslinien einer Reihe von inhaltlich teils stark divergierender Beiträge, welche durch die Kernthemen Transmedialität, Freizeit und Literatur lose zusammengehalten werden,  richtete ich mein Augenmerk auf die Frage, inwiefern es dem Herausgeber und den Autor*innen gelungen war, ihr selbstgestecktes Ziel, nicht nur ein akademisches, sondern auch ein interessiertes Laienpublikum anzusprechen, zu erreichen. Meiner Einschätzung nach konnte dieser Selbstanspruch zu weiten Teilen erfolgreich umgesetzt werden. Als entscheidende Faktoren identifiziere ich einerseits die Bitte des Herausgebers um einen zugänglichen, an der mündlichen Ausdrucksweise angelehnten Schreibstil und andererseits die Einarbeitung kurzer thematischer Einführungen in die meisten der eingereichten Aufsätze. Mit der vorliegenden Evaluierung dieses Projektes hoffe ich zur Ausarbeitung vertiefender Strategien beizutragen, die – auch jenseits der Populärwissenschaft – einer breitenwirksameren Verbreitung japanologischer Inhalte zuträglich sein werden.In my review, I discuss the trilingual reader Sprachlich-literarische »Aggregatzustände« im Japanischen: Europäische Japan-Diskurse 1998-2018, which was published in the year 2020 by be.bra wissenschaft verlag, Berlin. While aiming to pinpoint the main lines of argumentation amongst an array of diverse contributions – many of them revolving around questions of transmediality in leisure and literature throughout various points in Japanese history – I paid special attention to this book regarding its self-proclaimed objective to be equally accessible to scholars and a potentially non-academic, albeit Japanophile, readership. In my estimation, this goal was largely reached, which I attest to the editor’s attention to detail such as an accessible writing style and the incorporation of comprehensive introductory sections in most of the presented papers. With my assessment, I hope to contribute to the further development of strategies which may help to make research results in the field of Japanese studies more widely received
    corecore