50 research outputs found

    Improving the impact of nonpharmaceutical interventions during COVID-19: examining the factors that influence engagement and the impact on individuals

    Get PDF
    Background: During an evolving outbreak or pandemic, non-pharmaceutical interventions (NPIs) including physicaldistancing, isolation, and mask use may flatten the peak in communities. However, these strategies rely on communityunderstanding and motivation to engage to ensure appropriate compliance and impact. To support current activitiesfor COVID-19, the objectives of this narrative review was to identify the key determinants impacting on engagement.Methods: An integrative narrative literature review focused on NPIs. We aimed to identify published peer-reviewedarticles that focused on the general community (excluding healthcare workers), NPIs (including school closure,quarantine, isolation, physical distancing and hygiene behaviours), and factors/characteristics (including social, physical,psychological, capacity, motivation, economic and demographic) that impact on engagement.Results: The results revealed that there are a range of demographic, social and psychological factors underpinningengagement with quarantine, school closures, and personal protective behaviours. Aside from the factors impacting onacceptance and compliance, there are several key community concerns about their use that need to be addressedincluding the potential for economic consequences.Conclusion: It is important that we acknowledge that these strategies will have an impact on an individual and thecommunity. By understanding the barriers, we can identify what strategies need to be adopted to motivate individualsand improve community compliance. Using a behavioural framework to plan interventions based on these key barriers,will also ensure countries implement appropriate and targeted responses

    Antenna-coupled TES bolometers used in BICEP2, Keck array, and SPIDER

    Full text link
    We have developed antenna-coupled transition-edge sensor (TES) bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at 95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typically ~0.5%, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as measured directly from CMB maps in the 2013 season. Similar arrays have recently flown in the SPIDER instrument, and development of this technology is ongoing.Comment: 16 pgs, 20 fig

    The Role of Host Genetics in Susceptibility to Influenza: A Systematic Review

    Get PDF
    Background: The World Health Organization has identified studies of the role of host genetics on susceptibility to severe influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380). Methods and Findings: PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371 unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive of host genetic factors, this remains unproven. Conclusion: The fundamental question ‘‘Is susceptibility to severe influenza in humans heritable?’ ’ remains unanswered. No

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Genetic architecture:The shape of the genetic contribution to human traits and disease

    Get PDF

    ARTRA: a new database of the Arabidopsis transcriptome and gene-specific sequences for microarray probes and RNAi triggers

    No full text

    Distributed antenna-coupled TES for FIR detector arrays

    No full text
    We report progress toward large arrays of sensitive TES bolometers for submillimeter and far-infrared wavelengths with noise equivalent power (NEP) suitable for either imaging from a cooled space telescope or ground based spectroscopy. The arrays are based on a pixel design that makes use of a distributed transition edge sensor (TES) coupled to a slot antenna array. We have electrically characterized prototype detectors consisting of 256 TiN hot-electron TES microbolometers biased in parallel with T c =50 mK. The measured electron-phonon thermal conductance of prototype devices is as low as 1.1 pW/K at 50 mK corresponding to an electrical NEP of 4×10⁻¹⁹ W/Hz½. The time constant of two detectors with different geometries and transition widths was measured under a range of bias conditions. We have measured time constants ≳10⁻³ seconds, which is long enough for straightforward multiplexing with existing multiplexer technology
    corecore