We have developed antenna-coupled transition-edge sensor (TES) bolometers for
a wide range of cosmic microwave background (CMB) polarimetry experiments,
including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors
have reached maturity and this paper reports on their design principles,
overall performance, and key challenges associated with design and production.
Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at
95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric
co-aligned beams with controlled side-lobe levels. Cross-polarized response on
boresight is typically ~0.5%, consistent with cross-talk in our multiplexed
readout system. End-to-end optical efficiencies in our cameras are routinely
35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the
scalability of this design, we have deployed 2560 detectors as 1280 matched
pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as
measured directly from CMB maps in the 2013 season. Similar arrays have
recently flown in the SPIDER instrument, and development of this technology is
ongoing.Comment: 16 pgs, 20 fig