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Genetic architecture describes the characteristics of genetic variation that are responsible for 

heritable phenotypic variability. It depends on the number of genetic variants affecting a trait, 

their frequencies in the population, the magnitude of their effects, and their interactions with 

each other and the environment. Defining the genetic architecture of a complex trait or disease 

is central to the scientific and clinical goals of human genetics, which are to understand disease 

etiology and aid in disease screening, diagnosis, prognosis and therapy. Recent technological 

advances have enabled genome-wide association studies (GWAS) and emerging next-

generation sequencing studies to begin to decipher the nature of the heritable contribution to 

traits and disease. Here we describe the types of genetic architecture that have been observed, 

how architecture can be measured, and why an improved understanding of genetic architecture 

is central to future advances in the field and the influences that shape it. 

 

[H1] Introduction   
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It can be argued that most of the challenges and rewards in human genetics are dependent 

upon scientists understanding genetic architecture so that they can more fully describe what 

causes disease and translate this information to the clinic. The term ‘genetic architecture’ in 

human population-based studies describes the characteristics of genetic variation that are 

responsible for broad sense phenotypic heritability [G].1 Specifically, genetic architecture 

comprises the number of variants influencing a phenotype [G] , the magnitude of their effects on 

the phenotype, the population frequency of these variants and their interactions with each other 

and the environment.2 Thus, by contrast to narrow sense heritability, which only refers to the 

impact of additive genetic effects on complex traits [G] ,3 genetic architecture refers broadly to a 

complete understanding of all genetic contributions to a given trait or disease outcome, as well 

as to an awareness of the characteristics of this contribution.4 (Box 1) 

 

Human genomes can differ from one another at single genomic positions as single nucleotide 

variants [G] (SNVs), or they can exhibit larger structural changes including copy number 

variations, translocations and inversions5 (reviewed elsewhere6). To understand genetic 

architecture, variations in DNA sequence between genomes is tested for an association with 

phenotypic variability through gene-mapping studies, a field that has enjoyed success over the 

last decade.7 These association signal mapping studies have increasingly become genome-

wide association studies [G] (GWAS), whole-exome sequencing (WES) studies [G] and whole-

genome sequencing (WGS) studies [G]. 

 

GWAS use genome-wide genotyping arrays to measure genetic variation and they are the 

standard platform to test the association of a phenotype with common genetic variants. In this 

article, common genetic variants, low genetic variants and rare genetic variants are defined as 

those with a minor allele frequency [G] (MAF) of ≥5%, ≥1% but <5%, and <1%, respectively.8 

However, genotyping arrays can be designed to contain relatively rare variants. Furthermore, 

deep imputation [G] (discussed below) can be used to test phenotypic associations with 

additional low frequency and rare variants. As the least expensive modern genome-wide gene-

mapping method, GWAS has been successfully employed in large human populations and has 

allowed a much improved understanding of the direct association of common variants (that is, 

not through interactions) with complex traits and diseases.7 Many of these associations were 

found at non-coding variants, and these associations, including some that are driven by rare 

variants, were enriched at regulatory sites9,10 Indeed it is now thought that up to 85% of all 
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human common genetic variation is at least nominally associated with the expression of gene 

transcripts for protein coding genes.11  

 

WES can identify rare variants associated with a phenotype, but is restricted to examining the 

protein-coding content of the genome. Although WES can identify genetic variants that are likely 

to directly influence gene function, the exome represents only about 1% of the genome,12 and 

most disease-associated genetic variants that have been identified lie outside the exome.7 WGS 

can measure nearly all genetic variation in the human genome and assess structural variants 

more accurately than WES,13 but it costs much more than it. It is currently not possible to 

sequence all regions of the genome with equal quality. For example, regions with highly 

repetitive DNA are difficult to assess14 and, therefore, not all genomic variation is captured by 

WGS. Furthermore, due to their cost, WGS studies have been limited by sample size and 

consequently may miss rare variants. However, the recent availability of large-scale cohort 

resources, such as the UKBiobank15 and TopMed16 programmes, combined with concurrent 

advances in WES, WGS and GWAS, will facilitate a more precise description of the contribution 

of low frequency and rare genetic variants to the genetic architecture of complex traits and 

disease.17 Of note, GWAS, WES and WGS can also be used to estimate the narrow sense 

heritability of a trait or disease, and the resulting estimates have often been lower than those 

from classical twin heritability studies, which estimate heritability by contrasting the similarity in 

phenotypes between monozygotic and dizygotic twins. This has been reviewed previously18 and 

this is therefore not a topic of this review. 

 

Genetic architecture is often described as monogenic, oligogenic or polygenic, meaning that 

one, few or many genetic variants contribute to phenotypic variability, respectively.19 In addition 

to this, a recent theoretical development in the modelling of genetic architecture has suggested 

that all complex traits and diseases share a single ‘omnigenic’ architecture.20 This model 

suggests that gene regulatory networks may be sufficiently interconnected to allow all genes 

expressed in a disease-relevant cell to contribute to the disease phenotype. The omnigenic 

model posits that thousands of ‘non-core’ or ‘peripheral’ genes exert non-zero effects on 

essentially all downstream phenotypes.20 An omnigenic architecture would help explain the 

complexity of genetic architecture, and it draws parallels to the ‘infinitesimal model’21, in which 

all variants have a non-zero but small role in phenotypic variation. The omnigenic model also 

extends the idea of ‘universal pleiotropy’, which suggests that all characteristics are quantitative 

since, in principle, variation anywhere in the genome affects processes that are intimately 
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related to all others.22 These broad labels have been useful in theorizing the nature of genetic 

architecture, but modern techniques will enable the collection of data that will provide empirical 

evidence to instruct the description of genetic architecture.  

 

In this Review, rather than categorizing the genetic architecture of many diseases and traits, we 

describe different types of genetic architecture, how they can be assessed, and why genetic 

architecture is important in biology and in the clinic. We then highlight some factors that 

influence genetic architecture before outlining outstanding challenges and opportunities in 

obtaining a more complete understanding of genetic architecture and translating this to patient 

care. It should be noted that we can only comment on genetic architectures that have been 

observed to date and we acknowledge that these observed architectures will change as the field 

evolves.  

 

[H1] Types of genetic architecture 

Whether a trait or disease has a monogenic, oligogenic, polygenic or omnigenic architecture, 

there is variability in the nature of the genetic contributions to phenotype. This variability is likely 

to be a function of both differences or deficiencies in phenotypic measurement and genuine 

biological heterogeneity. Hence, the number of discovered genetic variants, and the variety of 

other attributes that contribute to genetic architecture, can vary substantially between diseases. 

 

To illustrate this, the genetic architecture of two well-studied diseases, type 1 diabetes mellitus 

and type 2 diabetes mellitus, can be compared (Figure 1a). Both diseases lead to 

hyperglycaemia, but type 1 diabetes mellitus is a disease of autoimmune dysregulation that 

leads to pancreatic β-cell dysfunction, whereas type 2 diabetes mellitus results from insulin 

resistance and relative insulin insufficiency.23 Type 1 diabetes mellitus is polygenic and 

associated with low frequency and common variants that have comparatively large effects on 

disease risk, relative to other complex diseases.24 By contrast, the risk of type 2 diabetes 

mellitus is associated with many genetic variants that have small effects on disease 

susceptibility.25,26 As recent large-scale sequencing studies have not identified low frequency or 

rare variants of large effect associated with type 2 diabetes mellitus,27 current data suggest that 

type 2 diabetes mellitus has a different genetic architecture to type 1 diabetes mellitus. The 

distinct pathophysiological mechanisms leading to these diseases may have evolved 

separately, leading to different architectures (see below). Since type 1 diabetes mellitus has a 

subset of observed variants that have a large effect on disease risk, genetics may help identify 
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individuals at risk for this disease, providing the opportunity to influence disease progression 

(see below).  

 

In contrast to diseases, biochemical traits are typically more proximally related to the function of 

a gene than complex diseases and common single nucleotide polymorphisms [G] (SNPs), taken 

together, are thought to contribute importantly to population-level variance.28 However, 

biochemical traits may still have highly divergent observed architectures. For example, the 

biochemical traits of low density lipoprotein (LDL) cholesterol and 25-hydroxyvitamin D levels 

are both ~50% heritable [G] according to classical twin studies.29,30 A GWAS of over 33,000 

individuals found that only four loci were associated with the level of 25-hydroxyvitamin D.31 One 

recent study looked for low-frequency and rare variants associated with low levels of vitamin D 

in 39,000 individuals through deep imputation32, and a second recent study searched for 

additional novel common variants associated with vitamin D levels in 79,366 individuals;33 these 

studies identified only four additional loci that are associated with 25-hydroxyvitamin D levels. 

Thus, the observed architecture of vitamin D level, at current sample sizes, is oligogenic and the 

associated genetic variants have comparatively large effects. By contrast, the level of LDL 

cholesterol seems to be influenced by many genetic variants with a broader distribution of effect 

sizes (Figure 1b).34 In a study from the Global Lipids Consortium involving 188,577 individuals 

of European ancestry, 52 loci were associated with the level of LDL cholesterol.34 Although the 

number of individuals in the study of LDL was larger than the number of individuals in the study 

of 25-hydroxyvitamin D, a smaller GWAS for LDL cholesterol levels in 19,000 individuals 

identified 11 LDL-associated loci,35 again suggesting, within the capabilities of existing studies, 

that these two biochemical traits with similar heritability have fundamentally different genetic 

architectures. Importantly, these comparisons between traits are limited by differences in 

sample size, which can impact observed genetic architecture. For example, schizophrenia had 

few associated common genetic variants at samples of several hundred cases,36 but at a 

sample size of tens of thousands, 113 genome-wide significant loci were observed.37 

 

Even the same trait measured at different anatomical sites can have a divergent genetic 

architecture. For example, bone mineral density, a clinically relevant risk factor for osteoporotic 

fracture,38 can be measured at different skeletal sites and is highly heritable.39 Measuring bone 

mineral density at the forearm in 5,672 individuals identified only one locus associated with this 

trait. This locus contained the genes WNT16 (encoding WNT16) and CPED1 (encoding 

Cadherin-like and PC-esterase domain-containing protein 1).40 Doubling this sample size 
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identified no new loci, but did find a low frequency variant with a large effect size of 0.46 

standard deviations per effect allele at the same WNT16–CPED1 locus.41 The same trait 

measured at the lumbar spine produces a contrasting genetic architecture; 19 independent loci 

were identified from 25,225 individuals, but the largest effect size of a single variant was only 

0.22 standard deviations.41 Although this difference in architecture could be a function of the 

different sample sizes, the available data suggest that architecture arising from common 

variants of highly similar traits can be remarkably different, and that these differences can be 

difficult to predict.  

 

[H1] How to assess genetic architecture 

The optimal conditions for elucidating genetic architecture are only achieved when all variable 

genotypes in the genome are measured in large populations in parallel with appropriate 

phenotyping. Although these conditions have not yet been achieved uniformly, studies have 

progressed towards this goal.27,42–44 GWAS data make it possible to estimate the number of 

undiscovered additive genetic associations that contribute to the genetic architecture of a trait.45 

Such estimates can provide guidance when deciding whether to pursue WES and/or WGS after 

a large GWAS has generally described the effect of common variants. However, for some 

polygenic and complex traits a multi-pronged analysis is likely to be needed to elucidate genetic 

architecture.42 Using triglyceride levels as an example, we describe an approach to partially 

resolve the architecture of a polygenic, complex trait. 

 

GWAS has identified many common variants of varying effect size for lipid levels.34 In the case 

of triglycerides (which are a type of lipid), targeted genotyping,46 GWAS,47 WES48 and WGS49 

have identified common variants of small effect as well as rare variants of larger effect that are 

associated with triglyceride levels and that are located in and near APOC3, the gene encoding 

apolipoprotein C3. The identification of large and small effect size variants at the same gene 

allows scientists to create a dose-response curve of genetic variants, where the effect of the 

genetic variant on protein function is plotted against the effect on phenotype; this curve helps to 

predict how pharmaceuticals targeted at the phenotype will affect the drug target.50 Although it is 

difficult to draw direct comparisons between the predictions made from short-term trials with 

those made on the basis of genetic effects that are often exerted over a lifetime, the exploitation 

of information like this for drug development is useful.51,52 Indeed, APOC3 has been 

therapeutically targeted using an antisense inhibitor of APOC3 synthesis, resulting in lowered 

triglyceride levels in humans, as would be predicted from the dose response curve.53 This 
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suggests that a mixed discovery strategy aimed at identifying small and large effect-sized 

variants may be beneficial to describing genetic architecture when many variants of varying 

effect size are implicated.  

 

As noted above, GWAS has been limited to common variants (MAF ≥5%), but variants with 

lower MAFs can now be estimated from genome-wide genotyping arrays using accurate deep 

imputation, which leverages the genotyping scaffold available from genome-wide genotyping to 

impute missing genetic variation at millions of additional genomic sites.54 This is achieved by 

comparing the haplotypes [G] observed in individuals subjected to genome-wide genotyping to 

those seen in an imputation reference panel [G] , which is a set of haplotypes derived from 

WGS.54 Through deep imputation, adequately powered GWAS can capture, in samples from 

individuals of European ancestry, the contribution to genetic architecture of genotypes with a 

MAF of approximately ≥0.1%.42 WES and WGS are generally used to explore the contribution of 

genetic variants with a MAF lower than 0.1%. However, WES and WGS genetic association 

mapping strategies suffer from low statistical power since single SNV association test [G] power 

decreases as the minor allele becomes rarer. Furthermore, since WES and WGS are 

expensive, their sample sizes are generally small. This further decreases the statistical power to 

reliably identify associations using these study designs. 

 

To overcome the reduced statistical power of WES and WGS studies in assessing the 

contribution of rare genetic variants to human traits and disease, region-based testing [G] is 

often used to ‘collapse’ information across a genomic region and test the association of the 

region with the phenotype; this strategy aims to improve statistical power.55 However, these 

tests have important limitations (Box 2) and thus have not often led to new insights. 

 

Prior to the population-based sequencing era, it was anticipated that low frequency and rare 

genetic variants would display very large effect sizes and hence explain some of the missing 

heritability (that is, heritability that cannot be explained by common SNVs).56 However, testing 

low frequency and rare genetic variants separately has revealed that they are not always 

associated with large effect sizes. For example, the UK10K project used single SNV association 

tests for >13 million SNVs with a MAF ≥0.1% to test their association with more than 30 traits in 

3,781 individuals.41 The study had 80% statistical power to detect associations for alleles with 

effect sizes of at least ~1.2 standard deviations on the trait at genetic variants with MAF as low 

as 0.5%. There was little evidence that alleles with a MAF in this range had effects on traits 
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larger than anticipated based on the power curve threshold (Figure 2; where the power curve 

defines the bound of statistical power, given the effect size and MAF). By contrast, several 

larger studies relying on single SNV association testing together with deep imputation have 

identified novel associations of large effect between low frequency variants and common traits, 

such as bone mineral density in the GEFOS Consortium, height in the GIANT Consortium and 

lipid levels in the Global Lipids Consortium.41,57–59 As the field progresses towards larger sample 

sizes, through the availability of resources such as UKBiobank and TopMed, increasingly rare 

genetic variants with larger effect sizes are likely to be identified from single SNV association 

testing. We anticipate that, of the methods currently available, this method will enhance our 

knowledge of genetic architecture the most. Of note, it has been suggested that common 

genetic variant signals may be explained by their synthetic association with rare genetic 

variants.60 Although this is a logical hypothesis, and some synthetic associations between 

common genetic variant signals and rare genetic variants have been observed,10 most common 

variants to date have not been found to be driven by synthetic associations.61,62 

 

[H1] When is genetic architecture important?  

Genetic architecture is important for screening for and diagnosing disease, enhancing biological 

understanding, drug development, Mendelian randomization and the scientific pursuit of gene 

mapping. Here we describe the role of genetic architecture in each of these aspects of human 

genetics. 

 

[H3] Screening and diagnosis. 

The genetic architecture of a disease can influence both an individual’s susceptibility to the 

disease and the variance in the population that can be explained by genetic factors.63 Here we 

try to disentangle these concepts, which are often conflated. 

 

An individual’s genetic susceptibility to disease is the sum of the effects of independent disease-

causing genetic variants and their interactions, and it is independent of the frequency of the 

disease-causing alleles in the population. However, variance explained [G] in the population 

depends on the number of disease-causing alleles and their frequencies and effect sizes, and it 

is thus a function of genetic architecture. One commonly-used measure of variance explained 

assumes that: the variants contribute to the additive genetic variance component only; that 

variants have small effect sizes, such that linearity approximately holds (that is,  the cumulative 

effect of all variants can be approximated by their sum); and that the variant ‘is’ the causal 
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variant (that is, its association with the phenotype is not mediated through another variant in 

linkage disequilibrium [G] ).64–66 The proportion of variance explained, under these assumptions, 

has been expressed for continuous phenotypes as 2𝑝(1 − 𝑝)𝛽2, where 𝑝 is the effect allele 

frequency, and 𝛽 is the effect of the allele on a standardized phenotype that has a mean of zero 

and a variance of 1. Thus, the frequency of the disease-associated allele helps explain variation 

in the population, even though it is not relevant when describing an individual’s susceptibility to 

disease. This has important implications for the use of genetic architecture in the diagnosis, 

prognosis and treatment of human diseases. 

 

The utility of a diagnostic test is often evaluated by assessing the area under a receiver operator 

curve [G] (ROC), which combines information from the sensitivity and specificity of a test for a 

binary outcome. Variance explained influences the specificity and sensitivity of genetic 

diagnostic tests and this is reflected in ROCs; as more variance in a phenotype is explained the 

area under the ROC will increase.63 As the amount of variance explained by genetic factors for 

most common diseases is currently low, the clinical utility of a ROC based on genetic factors is 

low. For example, a genetic risk score for osteoporosis in a study employing genetic variants 

that explained 5.8% of variance in bone mineral density (the clinically-relevant marker of 

osteoporosis) indicated a risk of osteoporosis that was not importantly different from the risk that 

would be expected by chance.67 However, variance explained by genetic factors in rare 

monogenic diseases such as cystic fibrosis can approach 100%.68 Consequently, at present, 

disease-associated genetic variants can be used to diagnose cystic fibrosis but not 

osteoporosis. 69 The reason for this difference in clinical care is due to the amount of variance 

explained by the known genetic variants. Further, the accuracy of a diagnostic test will increase 

with the prevalence of the disease in the population. Note that in this Review we define 

accuracy as the proportion of all diagnostic test results (both positive and negative) that are 

correct.  

 

Thus, genetics can aid the diagnosis of rare diseases in which most phenotypic variation is 

explained by known and highly penetrant genetic variants. However, the genetic architecture of 

most common diseases does not currently permit the use of genetics in diagnosis and 

screening, due to low variance explained. This situation will change as the variance explained in 

common disease risk by SNVs increases as the sample size of gene mapping studies 

increases, thus enabling the detection of smaller effects from common variants and larger 

effects from low-frequency and rare variants.70   
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[H3] Biological understanding and drug development.  

Some have suggested that the small amount of variance explained for most common SNPs for 

common diseases precludes their utility in drug target identification. This concept can be 

misguided in the absence of further information about the genetic architecture of the disease 

association. In order to understand the relevance of a small effect size SNP to drug 

development, one must first understand the effect of that SNP on protein level or function. Even 

if a SNP has a small effect on protein level and disease risk, this protein may still be a suitable 

target for disease prevention. This is because a small effect on protein level which translates to 

a small effect on disease risk may be consistent with a large effect on protein level which 

translates to a large effect on disease risk. Similarly, if a drug has a small effect on a protein 

level and has a small effect on disease risk, it remains possible that a drug having a larger effect 

on protein level may have a larger effect on disease risk. Further, such small effect sizes from 

SNPs may be particularly informative if the SNP has a large effect on protein level and no effect 

on disease risk. In such situations, the protein would consequently be less attractive as a drug 

target.  

 

The clinical effect of drugs on LDL cholesterol level and cystic fibrosis illustrate the dichotomy 

between variation explained and its utility to drug development. The activity of 3-hydroxy-3-

methylglutaryl-coenzyme A reductase (HMG-CoA reductase) partially determines the level of 

circulating LDL cholesterol.71 Pharmacological inhibition of HMG-CoA reductase reduces the 

level of LDL cholesterol by approximately 30–40%, which reduces the incidence of coronary 

heart disease.72 The common SNP most strongly associated with LDL cholesterol level near 

HMGCR, the gene encoding HMG-CoA reductase, explains 0.26% of the variance in LDL 

cholesterol level, which is clearly a small amount (rs12916, MAF 0.4).34 Thus, even though the 

HMG-CoA reductase locus harbours a common genetic variant that explains only a small 

amount of phenotypic variation, the pharmacologic inhibition of HMG-CoA reductase is clinically 

beneficial. Indeed there are many other reported cases in which genetic variants near the drug 

target have small effects on the phenotype, yet pharmacological manipulation of the drug target 

has profound effects on phenotype.73 For example, common variants near PCSK9, the gene 

encoding proprotein convertase subtilisin/kexin type 9 (PCSK9), have small effects on LDL 

cholesterol level74 whereas pharmacological inhibition of PCSK9 has large effects.75 

Furthermore, RANKL, the gene encoding receptor activator of nuclear factor κ-B ligand 

(RANKL), harbours common variants of small effect on bone mineral density,67 yet 
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pharmacological inhibition of RANKL has large effects on bone mineral density.76 Thus, small 

effect size SNPs can serve to highlight proteins that, when targeted with large effect size 

pharmaceuticals, can have large effects on disease risk. 

 

As a contrasting example, nearly all patients with cystic fibrosis have mutations in CFTR, thus 

the variance explained by genetic variation in CFTR approaches 100%.68 However, despite the 

discovery of the association between CFTR and cystic fibrosis in 1989, the only drug targeting 

cystic fibrosis transmembrane conductance regulator (CFTR) was approved 23 years later and 

is partially efficacious in only 4.4% of cystic fibrosis patients.77 Therefore, even when nearly 

100% of the phenotypic variance [G] is explained by a few genetic variants at a single gene, 

pharmacologic therapies against the identified gene may not immediately advance patient care. 

 

The amount of variance explained by a genetic variant does not always correlate with the 

suitability of the gene as a therapeutic target because drugs work on proteins; the base pair 

associated with the disease serves to help identify the causal protein. The relevance of the 

variation explained to the clinic should be measured by assessing the effect of pharmacological 

agents on the protein and its resultant effect on disease. Furthermore, a gene which has no 

variants that are associated with a disease, perhaps because natural selection makes such 

perturbing genetic variants so rare that they lack statistical power for such an association, could 

still be a good drug target.  

How would a truly omnigenic architecture affect drug development? If all expressed genes in a 

cell that influences a phenotype had equivalent effects on phenotypic variance, then 

pharmacological manipulation of any of the expressed proteins would have an impact on the 

phenotype. This situation is unlikely as most drugs fail in drug development pipelines because 

they do not affect the phenotype, despite evidence of their engagement with the drug target.78 

Thus, there must be a gradient of effect of the impact of different proteins on phenotype, where 

some genes have large effects and other genes have smaller effects. This suggests that a set of 

‘core’ genes must have a more pronounced effect on phenotype and that the proteins derived 

from these genes will drive pharmaceutical development.  

  

[H3] Mendelian randomization. 
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Mendelian randomization is an established genetic epidemiology method that can provide 

evidence supporting, or contradicting, the causality of a risk factor in disease.79 This method 

uses SNVs as proxies for risk factors and can help to address confounding [G] and reverse 

causation [G]. Confounding is theoretically prevented in this method since SNVs are randomly 

allocated at conception, thereby breaking their association with factors not in the causal 

pathway. This situation is similar to the randomization process which prevents confounding in a 

randomized trial. Reverse causation is eliminated in this method since SNV allocation always 

precedes disease onset and cannot be altered by it. One of the main assumptions of Mendelian 

randomization is an absence of horizontal pleiotropy [G] , in which the genetic variant influences 

the outcome in a manner independent of the risk factor. Horizontal pleiotropy is distinct from 

vertical pleiotropy [G] ; the latter is defined as the association of the genetic variant with other 

traits in the same pathway due to its effect on the risk factor.80,81 Mendelian randomization 

studies rely upon vertical pleiotropy, but can be biased by horizontal pleiotropy. Knowledge of 

genetic architecture can help to detect the presence of pleiotropy and to guard against it.  

 

A polygenic architecture provides the opportunity to undertake sensitivity testing to identify the 

presence of horizontal pleiotropy through the Mendelian randomization-Egger (MR-Egger) 

test,82 (reviewed elsewhere).83 MR-Egger aims to account for, and address, the presence of 

unbalanced horizontal pleiotropy by assessing whether the intercept is different from the origin 

when plotting the relationship between the SNV on the outcome versus the SNV on the 

exposure. Unbalanced horizontal pleiotropy would lead to SNVs with a systematically higher or 

lower effect on the outcome than on the exposure, as they act upon the outcome through 

exposure-independent pathways. An omnigenic genetic architecture has implications for 

Mendelian randomization because it suggests universal pleiotropy in the human genome, 

however whether omnigenic pleiotropy is horizontal and balanced, horizontal and unbalanced, 

or vertical must be considered.  

 

It has been suggested that omnigenic pleiotropy violates Mendelian randomization assumptions 

when two phenotypes with omnigenic architectures are influenced by the same tissue type as 

this situation would result in horizontal pleiotropy18. However in one example for bone tissue 

(Figure 3), current data strongly suggest that unbalanced horizontal pleiotropy does not exist in 

two highly polygenic (and possibly omnigenic) traits, bone mineral density and height, both of 

which are influenced by the same tissue.  
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Beyond the omnigenic model, it is clear that the expression of certain genes in some cells 

causes meaningful biological changes in other cells. Indeed, signalling molecules dominate in 

endocrinology, whereby complex homeostatic feedback systems regulate many central 

biological processes. For example, insulin secreted by the pancreas causes glucose uptake in 

different cell types, such as skeletal muscle.85 These are examples of vertical pleiotropy, but not 

horizontal pleiotropy, and therefore do not violate the assumptions of Mendelian randomization. 

[H1] What influences genetic architecture? 

Here we describe some of the major factors that influence genetic architecture and discuss how 

understanding these determinants of architecture can help to improve our understanding of the 

genetic determinants of common diseases and traits. 

  

[H3] Phenotype. 

Phenotypes vary in how they relate to underlying genetic variation, their interaction with the 

environment, and by the quality of their measurement; all of these parameters contribute to 

observed genetic architecture. In contrast to genuinely polygenic complex traits, some 

molecular traits or medical conditions can have relatively large portions of variance predicted by 

one or a few relatively large genetic contributions. Examples of these molecular traits include 

the levels of C-reactive protein and86 uric acid,87 and age-related macular degeneration.88 In 

cardiovascular disease, rare variants of large effect can lead to severe monogenically controlled 

lipid disorders89, and there are several other polygenic traits for which heritability is high but the 

number of major contributing loci is relatively low (reviewed in reference 86).90 Measurement 

can also introduce complexity. For example, when measuring educational attainment,91 the 

observable phenotype (that is, years of schooling or college attendance) is likely to capture 

many factors marking a collection of biological pathways that contributed to the analysed 

outcome. Consequently, in the presence of adequate analytical power, the architecture of this 

trait will have polygenic characteristics as a result of the broad-spectrum measurement. 

This relationship between the measurement of phenotype and genetic architecture has 

implications for the interpretation and utilization of genetic variation in applied genetic and 

epidemiological analyses. The extent of horizontal pleiotropy92 can be estimated and analytical 

methods can use genetic associations to assess the overlap in heritable contribution between 

traits; for example linkage disequilibrium score regression93 can assess shared, narrow-sense 

heritability. However, these analyses [Au:OK? Or, please clarify ‘these’] cannot change what 

has been measured. Our limited approaches to population-based phenotyping are likely to 
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produce situations whereby apparently different traits in any given study are actually distal 

measures of the same underlying biological events. In this case, it is measurement that has 

shaped our interpretation of shared genetic architecture and a perceived phenotypic 

dependence is a consequence of the difficulty in directly measuring biology. 

 

[H3] Selection.  

Selection is the evolutionary process by which the frequency of genetic variation changes in 

response to a fitness consequence in the local environment. We will show examples where 

genetic architecture may have been influenced by the nature of the trait of interest, the relative 

age and effect of the mutations that explain its variation, and the characteristics of the 

population being assessed, contribute to selection and will influence genetic architecture. As a 

motivating example, common genetic variants with large effect could not exist if purifying 

selection removed them from the population42 (Figure 2). Although it is difficult to prove how 

selection has directly influenced genetic architecture, several natural experiments inform the 

relationship between complex trait genetic architecture and selection.  

 

Firstly, effective population size may influence observed genetic architecture by reducing the 

strength of selection94,95, allowing deleterious variants to increase in frequency by genetic drift 

(Figure 4a). Small population sizes allow variants of any frequency to change more rapidly —

akin to a founder effect [G] — and by chance, the frequency of some functional alleles can drift 

upwards so that they provide sufficient statistical power to detect their effect.96 Drift has been 

exploited by GWAS using isolated populations to enhance analytical power in otherwise limited 

sample sizes. An example of this is the Kosrae Pacific island population, individuals of which 

have a high prevalence of type 2 diabetes mellitus, thought to be a consequence of a founder 

event.97 Further, the frequencies of variants that cause type 2 diabetes mellitus had likewise 

changed in this population compared with populations on nearby islands. However, little 

evidence of different effect sizes from individuals of European descent was found, meaning that 

any individual possessing a given variant of the allele has the same increase in risk of type 2 

diabetes mellitus, regardless of ancestry.97 Furthermore, genetic drift may contribute to 

differences in longevity between Greek island populations, despite similarities in culture.98 SNPs 

that both increase or decrease longevity can be found at corresponding frequency in such 

drifted populations.  
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Secondly, populations share different histories, which can affect genetic architecture (Figure 

4b). For example, infection prevalence naturally varies, resulting in differential selection over 

time99, and the genetic architecture of infectious disease resistance varies from Mendelian to 

highly complex.100 This genetic architecture can theoretically be linked to the diverse 

evolutionary responses of the immune system101. An important example is the human leukocyte 

antigen (HLA) locus, which encodes the major histocompatibility complex that allows the 

immune system to distinguish ‘self’ from ‘non-self’.102 As individuals with the same HLA variant 

will be susceptible to similar infectious disease strains, recombination at this locus (and 

observed variation at the level of the population) is structured to provide offspring with a 

different resistance phenotype to their parents.103 However, this has not occurred for resistance 

to human malaria, which is caused by the same variant that causes sickle cell disease.104 In this 

case, antagonistic horizontal pleiotropy has allowed sickle cell disease to be maintained at 

relatively high frequency in populations exposed to malaria.105 Horizontal pleiotropy appears to 

maintain phenotypic diversity across many culturally regulated human phenotypes.106 Over 

evolutionary timescales, we therefore expect genetic architecture to change where selection is 

strong and mutations arise.  

 

Determining the extent by which selection influences genetic architecture requires adequate 

measurement of variants under selection. Strategies to detect selection in the genomes of 

contemporary populations include examination of functional variation, allele frequency variation, 

population differences and haplotype profiles (reviewed elsewhere).107 These methods agree 

that strong and recent signatures of selection have radically altered the frequency profiles of 

specific variants; for example, lactase persistence [G] and haemoglobinopathy-linked malarial 

resistance have both been detected in this way108–111. Signals as young as 2,000 years may be 

detected in the patterns of singleton [G] variation.112 Strong selection acting on traits influences 

genetic architecture because the anticipated phenotypic effect for a SNP of a given frequency is 

distorted (Figure 4b) relative to the phenotypic effects that are predicted by the dose-response 

curve.  

 

Despite difficulties in measuring selection, many genetic variants might be subject to subtle 

selection mechanisms acting in a polygenic model. Evidence has emerged for a ‘coordinated 

shift in allele frequency’113 in, for example, height112 and educational attainment114 across 

different populations. Specifically, GWAS for complex traits in large population-based collections 

have yielded evidence for polygenic contributions to complex traits which also demonstrate 
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detectable and trait specific differences in allele frequency across populations (Figure 5).115,116 

Together, these observations are suggestive of polygenic selection, where even in the presence 

of relatively small phenotypic effects, coordinated action across many loci will ultimately have an 

effect on the genetic architecture of the trait in question.  

 

[H3] Decanalization.  

Canalization117 maintains physiologic homeostasis through plastic responses to environmental 

or endogenous perturbations. Important cellular systems with long evolutionary histories are 

likely to be canalized; for example, body temperature is regulated to remain constant regardless 

of environment in humans, but not in all species.118 Decanalization is the hypothetical process 

whereby well-canalized systems can be destabilized by changes in environment or by the 

introduction of large-effect size genetic variants.117 The decanalizing effect generated by strong 

perturbations of long-standing homeostatic processes can lead to disease.117 Here we provide 

examples of genetic and environmental decanalization that have led to specific genetic 

architectures. 

 

Genetic variants of large effect, which hypothetically should become rare through negative 

selection, may cause perturbations that cannot be physiologically adapted to, thereby creating 

decanalization events. The effect size of variants which drive decanalization events can, in fact, 

be substantially larger than the effect size predicted by their MAF41,42,57,119. For example, the 

changes in bone mineral density owing to low-frequency genetic variants associated near EN1 

(the gene encoding homeobox protein engrailed-1) are four-fold larger than the mean changes 

caused by common variants and are in excess of that expected for the frequency of the 

associated variant; this may therefore represent an example of genetic decanalization.41 An 

example of environmental decanalization is the large change in carbohydrate intake in Inuit (a 

group of culturally similar indigenous individuals inhabiting Arctic regions) after the introduction 

of Western diets over the past 60 years, which is thought to have precipitated the discovery of 

common alleles with a large effect on the risk of type 2 diabetes mellitus and glucose 

dysregulation (Box 3).120,121  

 

The interaction between canalization and selection can be used to understand complex traits 

(Figure 4c). Differences in selection across different populations enables admixture mapping 

[G] ,122 which provides an opportunity to further understand genetic architecture. Since admixed 

individuals carry different proportions of their ancestral population genomes, it is possible to 
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explore whether the effect size at a causal locus varies as a function of the ancestry proportions 

across the rest of the genome. This enables inference about whether causal variants act 

independently and additively, or if more complex relationships are likely. For example, consider 

a variant that affects a canalized phenotype. If other variants across the genome also affect the 

phenotype and further vary in frequency by population, then the detected effect size should 

depend on the ancestry mixture.121  

 

[H1] Gene and environment interactions [Au:OK to reduce length to <39 characters, 

including spaces?]  

The effect of a genetic variant may vary depending on the level of an environmental determinant 

of the trait (gene x environment interactions), or by the number of alleles at another genetic 

variant (gene x gene interactions). This is not a focus of this Review and it has been discussed 

elsewhere123; however, it should be noted that there is not yet strong evidence that gene x 

environment or gene x gene interactions play a predominant role in determining most complex 

phenotypes. For example, recent evidence suggests that amongst the potential environmental 

determinants of body mass index (BMI), which together explain 14% of phenotypic variation, 

there is only evidence for interactions between genotype and smoking.124 All other 

environmental determinants of BMI had genetic interactions effects of 1% or less of the total 

phenotypic variance. This finding is supported by a general deficit of replicated gene x 

environment interactions in the literature. Consequently, although some interactions must exist, 

as yet these do not explain a large proportion of phenotypic variance and therefore do not 

strongly influence observed genetic architecture. 

 

Migration studies are important for comparing genetic and environmental risk factors and their 

interaction. For diseases primarily related to lifestyle and diet, including obesity,125–127 heart 

disease,128 inflammatory bowel disease,129 tuberculosis,130 and several cancers,131,132 migrants 

transition between the risk associated with their original population and their assimilating 

population. Studying individuals that migrate allows researchers to explore the relative role of 

environment in each disease, and hence the conclusion varies depending on the genetic 

architecture and contribution of each. 

 

[H1] Summary and conclusions  

The scientific drive behind exploring and understanding genetic architecture follows a desire to 

explain and understand all of the genetic contributions to phenotypic variance, which has been a 
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goal in quantitative genetics for more than a century.21 It will become possible to empirically 

describe near-complete genetic architecture for some traits. Alongside a growing collection of 

analytical approaches addressing the phylogenetic relationships between complex traits and 

diseases,93 the availability of genetic and phenotypic data in increasingly large population-based 

studies, such as UKBiobank15, will inevitably add to our understanding of relative genetic 

contributions. 

 

A more complete understanding of the genetic architecture of complex traits and diseases will 

maximize the utility of human genetics in disease screening, diagnosis, prognosis and therapy. 

Importantly, variance explained is strongly related to genetic architecture but it is not essential 

for drug development and individual-level risk prediction. The past decade of gene mapping in 

complex traits and diseases has shown that their genetic architectures are highly variable and 

difficult to predict. Nonetheless, clear trends have emerged, demonstrating that phenotypes that 

are reliably and inexpensively measured and more proximal to the effects of genetic variation 

are more amenable to the tools used to dissect their genetic architecture. Subject to 

measurement, the ultimate architecture of many traits may well be infinitesimal21, and this will 

affect the clinical goals of genetics; however, some genes have more important roles in disease 

causation than others, and some of these genes can be targeted for drug development.51 Drug 

developers should always consider the effect of the SNV on the function of the encoded protein 

when assessing the magnitude of the SNV’s effect on disease risk. Small effect sizes of SNVs 

on disease can be highly relevant to drug development when they have large effects on protein 

level or function, suggesting that the protein target is not appropriate for that disease. 

Furthermore, small effect sizes of SNVs can also highlight proteins, the pharmacological 

manipulation of which has large effect sizes on disease. 

 

Finally, understanding how the forces of natural selection and decanalization have influenced 

differing architectures across populations will be particularly helpful as the field moves to more 

fully characterize architectures in non-European ancestries. Architecture can be most easily 

measured through single-base pair testing and this approach has produced most of the loci 

associated with traits and common diseases. By contrast, rare variant collapsing tests are 

difficult to define, interpret and compare across traits. Thus, most advances in understanding 

allelic architecture will likely arise in the short-term through single-base pair testing in very large 

populations. Many of the greatest challenges and rewards in human genetics over the next 



 

 19 

decade will rely upon understanding genetic architecture to more fully appreciate the biologic 

mechanisms that translate varying architectures to disease susceptibility. 
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Box 1: What is genetic architecture? 

 

Genetic architecture refers to the landscape of genetic contributions to a given phenotype. It 

comprises the number of genetic variants that influence a phenotype, the size of their effects on 

the phenotype, the frequency of those variants in the population and their interactions with each 

other and the environment.2 This is fundamentally different to the absolute amount of 

phenotypic variability that is accounted for by heritable factors (Figure 1). We can illuminate this 

concept by comparing two extremely different heritable phenotypes: height and phenylketonuria. 

Height has a polygenic, or even omnigenic, architecture,20 the latter of which is similar in 

concept to an infinitesimal architecture.21 Height must be sufficiently distal from the genome and 

inclusive of many biological processes and causal genetic variants to have such a polygenic 

architecture. By contrast, phenylketonuria has a monogenic architecture: although heritability is 

high, the shape of this heritability is singular. In phenylketonuria, one ‘inborn error’133 is 

responsible for the heritable phenotypic variability and thus the trait measured must be proximal 

to that genetic change to guard it from other potential contributions. These two contrasting 

examples of genetic architecture differ in the tools needed to discover and describe them and in 

how they can be used in a research or clinical setting. Traits like height may reflect the 

existence of many, common, ancient and small contributions to a complex phenotype, which 

require large population based collections and genome-wide common variant data to detect and 

which may have use in studies of risk factor exposure through techniques such as Mendelian 

randomization. In contrast, phenylketonuria may reflect relatively recent and thus rare mutations 

that have avoided the rigor of time and selection and which require huge samples of sequence 

data or familial designs to detect, but they may also have immediate clinical or pharmaceutical 

implications. Importantly, the architecture of these traits cannot be reliably predicted by the 

assessment of heritability alone. We aim to explore genetic architecture here given lessons from 

both the genome-wide association study and next generation sequencing eras. Our aim is to 

highlight that there is likely to be great variability in the genetic architecture of given traits of 

interest and that this should be considered for three reasons. First, architecture should be a 

motivating factor for comprehensive genetic studies of many phenotypes with unlimited size. 

Second, study designs should be tailored to observed genetic architecture and finally, 

understanding architecture and its limitations directly informs the clinical goals of human 

genetics, which are to assist in diagnosis, prognosis and the identification of therapeutic targets. 
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Box 2: Limitations of region-based single nucleotide variant testing. 

Region-based testing, which is motivated by a desire to improve statistical power to detect rare 

SNVs, tests the association of a trait with genetic variation across a genomic region, rather than 

the association of a trait with specific genetic variant. Region-based have important limitations, 

including difficulty with replication since, in a region of interest, the number of genetic variants 

observed and their allele frequencies can differ substantially across cohorts, even in populations 

of similar ancestry. Use of these tests also presents other practical problems. First, region-

based tests should be optimized for a specific genetic architecture, but the complete genetic 

architecture of a trait or disease is not often known and will vary between populations, and the 

genetic loci will also exhibit differences in local allelic architecture for a given trait. Second, most 

of the genetic variants identified through whole-genome sequencing studies (WGS) may have 

no discernible effect on the selected phenotype, and the inclusion of large numbers of variants 

with no effect in a region-based test will reduce power.134 Third, the direction of effect of rare 

variants (that is, whether they increase or decrease the risk of the disease) is not always known 

and this reduces the power of some region-based tests. Last, the relative performance of 

different tests can vary across significance thresholds; hence, if only a small number of 

candidate loci are being examined, the optimal test statistic is likely to be different from a 

genome-wide analysis.135 Previous work has outlined additional assumptions built into region-

based testing.136–138  

 

These challenges were apparent in the UK10K cohort project as neither a burden test [G] nor a 

variance component test [G] could identify a single instance, across 60 traits, where a region-

based test could identify a region not already highlighted through single SNV testing42. This 

region-based testing included several strategies to combine variants across a genomic region: it 

combined variants <1 and <5% MAF separately and included only protein-coding regions and 

only regions with evidence of evolutionary conservation. These tests may have yielded null 

results because UK10K used low-coverage sequencing and imputation, which captured rare 

variants with high fidelity, but as it had lower sensitivity for singletons and doubletons [G] it 

could have missed contributions from these SNVs.42 Findings from the UK10K cohort project 

are also limited by the bounds of statistical power, given the study sample size. Nonetheless, 

region-based testing did not contribute to our understanding of genetic architecture in this study. 

 

Other large sequencing-based studies have employed region-based tests with limited success. 

The GoT2D and T2D-GENES consortia undertook WGS in 2,657 individuals of European 
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descent with and without type 2 diabetes mellitus, and whole-exome sequencing (WES) in 

12,940 individuals.27 No rare variants or regions were found to be associated with type 2 

diabetes mellitus in this programme. A recent assessment by the GIANT-Consortium of coding 

genetic variants associations with height in 711,428 individuals identified rare variants at 83 loci 

associated with height using single SNV testing, but only three novel regions were identified 

through region-based testing.119 Similarly, although WGS-based studies from deCODE have 

identified single-SNV associations, clear associations from region-based tests were not 

identified,139 and a WES program in 9,983 patients with early-onset myocardial infarction, 

identified only single-SNV associations.140 This is consistent with previous work demonstrating 

that the empirically observed power of region-based tests is low.141 A promising avenue of 

region-based testing is transcriptome-wide association testing,142 although over 80% of the 

region-based findings using this method were identified using simple single SNV association 

testing. 

 

It is not apparent how region-based testing could assess the presence of an omnigenic 

architecture, although a region-based test revealed an enrichment of association signal in 

different types of variants, stratified by presumed functional effect, which showed a stronger 

signal from SNPs residing in active chromatin.20  

 

The success of region-based testing methods may increase as larger studies can capture and 

annotate very rare variants in large groups of individuals. However, in our experience the most 

profitable strategy for finding low frequency or rare genetic variants with previously 

undiscovered contributions to genetic architecture is currently the use of single SNV association 

tests in large cohorts.119  
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Box 3: Decanalization can identify unusual genetic architectures.  

Decanalization occurs when there is a large environmental change that influences a biological 

system that is strongly canalized. Circulating glucose levels are strongly canalized and show 

little variation in a healthy state.143 However, a large environmental change in Inuit may have led 

to decanalization of glucose control, which subsequently provided an opportunity to identify an 

unusual genetic architecture for type 2 diabetes mellitus; in the Inuit, this genetic architecture 

includes a common variant (minor allele frequency (MAF) 0.17) that has a large effect on the 

risk of developing type 2 diabetes mellutis.121 Living in a reduced-carbohydrate environment, 

Inuit had a relatively low intake of carbohydrates prior to the introduction of Western diets (see 

the figure, part a). Recent estimates demonstrate a much higher proportion of carbohydrate 

intake in Inuit contemporary diets.144 This large environmental change may have resulted in a 

decanalization of glucose regulation, which may have contributed to a dramatic increase in the 

prevalence of type 2 diabetes mellitus amongst Inuit between 1967 and 2002 (see the figure, 

part b).145,146 A recent metabochip genome-wide association study for glucose levels 2 hours 

after the intake of glucose in an oral glucose tolerance test found that a common premature 

termination codon in TBC1D4, the gene encoding TBC1 domain family member 4, had a large 

effect on this phenotype in Inuit (see the figure, part c, which demonstrates the strong 

association signal with glucose levels after an oral glucose tolerance test arising on 

chromosome 13). This information led to different diagnostic strategies in this population, which 

aim to use oral glucose tolerance testing to more accurately diagnose type 2 diabetes mellitus in 

this population.121 By contrast, there are no common genetic variants of similarly large effect for 

type 2 diabetes mellitus in the European population.147 The unusually high effect-size common 

variant for glucose levels 2 hours after oral glucose identified in Inuit (in red; see the figure, part 

d) contrasts with the small effect size common variants identified for this phenotype in a 

European-ancestry population (in blue; see the figure, part d).121,148 These data suggest that 

decanalization can lead to unusual genetic architectures, particularly in historically isolated 

populations, such as Inuit. Graphs in parts a, b and d were generated using data published in 

references xxx, xxx and xxx, respectively. Part c was reproduced, with permission, from 

reference 121.  
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Figure 1. Contrasting the observed genetic architecture of common diseases and 

biomedical traits. a) Genome-wide significant single nucleotide variants (SNVs) for type 1 

diabetes mellitus and type 2 diabetes mellitus are shown. Large genome-wide association 

studies (GWAS) show that these common diseases have contrasting observed genetic 

architectures. Type 1 diabetes mellitus is associated with common and low frequency genetic 

variants, some of which have relatively large effects on genetic architecture; these effects are 

measured in odds ratios, which give the odds of the outcome given exposure to one risk allele, 

compared to the odds of the outcome given exposure to no risk alleles.149 The genetic 

architecture of type 2 diabetes mellitus is shaped by, what are in general, smaller effect size 

common variants (which have a higher minor allele frequency (MAF)). [Au: higher than what? 

MAFs of larger effect size common variants?] The different architectures for diabetes type 1 

mellitus and type 2 diabetes mellitus impact the development of diagnostic tests and biologic 

validation of therapeutic targets for these diseases.25 b) Genome-wide significant SNVs for the 

biochemical traits Vitamin D (25OHD) and LDL cholesterol. Vitamin D, as measured by 25-

hydroxyvitamin D (25OHD) is associated with few genetic variants, some of which have 

relatively large effects.32 Only two new loci have been identified as being associated with 

25OHD, despite increasing the discovery sample size five-fold.33 Low density lipoprotein (LDL) 

cholesterol is associated with many more loci than 25OHD and these loci have a broader 

distribution of effect sizes than those associated with 25OHD.34 Beta is the additive effect of the 

minor alleles on the phenotype in standard deviations. Graphs in parts a and b were generated 

using data pubished in references xxx and xxx, respectively. 

 

Figure 2. Allelic spectrum for single marker association results for selected traits. A 

variant’s effect (absolute value of Beta, expressed in standard deviation units) is given as a 

function of minor allele frequency (MAF). The effect of each variant was assessed using single 

variant association tests, providing the effect of each variant, in standard deviation units, on the 

trait. Note that N is sample size and  is the multiple-testing corrected threshold to declare 

significance. Error bars are proportional to the standard error of the beta. Variants identifying 

known loci are shown in dark blue and variants identifying novel signals that have been 

replicated in independent studies are shown in light blue. The red and orange lines indicate 80% 

power at experiment wide significance level (p value ≤ 4.62x10-10) for the maximum theoretical 

sample size for the whole genome sequencing sample (red) and whole genome sequencing and 

genome-wide genotyping samples (orange) in the UK10K project.42 The observed deficit of 
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large-effect size rare variants will likely be overcome through larger sample sizes, as already 

observed for traits like bone mineral density.70 The main messages of this graph are that effect 

sizes increase with decreasing MAF, and that identified variants are not dramatically above 

what would be expected, given the power of the study. Figure reproduced, with permission, 

from reference 42 

 

Figure 3. Lack of unbalanced horizontal pleiotropy between bone mineral density and 

height using Mendelian randomization. The Mendelian randomization (MR)-Egger82 plot tests 

for the presence of unbalanced horizontal pleiotropy, which would violate a core assumption of 

Mendelian randomization. The two traits studied by genome-wide association studies (GWAS) 

are height84 and bone mineral density70. Both are highly polygenic and dependent upon the 

same tissue, bone. The omnigenic hypothesis suggests that widespread network pleiotropy 

would violate the pleiotropy assumption of Mendelian randomization if both the exposure and 

the outcome are complex traits dependent on the same tissue. To test whether omnigenic 

pleiotropy violates Mendelian randomization assumptions, we assessed the evidence for 

horizontal pleiotropy between bone mineral density and adult height, two polygenic phenotypes 

that are influenced by bone tissue and that have been subjected to large-scale GWAS. Using 

the largest published [Au:OK?] GWAS for bone mineral density (n = 142,487, using 169 

biallelic conditionally independent genome-wide significant independent SNVs)70 and adult 

height (n = 253,288),84 we tested for horizontal pleiotropy using MR-Egger, treating bone 

mineral density as the exposure and height as the outcome.82 However, this MR-Egger plot 

shows that there is no evidence of unbalanced horizontal pleiotropy, strongly suggesting a lack 

of network unbalanced horizontal pleiotropy that would violate Mendelian randomization 

assumptions. (The MR-Egger intercept is not different from zero: -0.002, 95% confidence 

intervals: -0.005, 0.001). For contrast, the inverse variance weighted results are shown, which 

constrain the line to intersect with the origin. GEFOS, genetic factors for osteoporosis; GIANT, 

genetic investigation of anthropometric traits. 
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Figure 4. Hypothetical departures from the ‘dose-response’ curve: Diagrams show the 

expected relationships between minor allele frequency (MAF) and the effect that variants may 

have on complex traits; this relationship defines the variation in genetic architecture between 

populations. a) Common single nucleotide polymorphisms (SNPs) are not expected to show 

strong effects on a phenotype as they would likely be deleterious and selected against to 

become rare. Therefore, a characteristic ‘dose-response’ curve, above which there are no 

variants, is expected. The shape of this curve can be determined by the effective population 

size and the number of samples in the dataset. A lower effective population size reduces the 

efficacy of selection, allowing greater variation in MAF. The points on the curve represent SNPs; 

the arrows show how they might move in a smaller population. b) Genomic architecture may 

differ by population. Here, population A experienced strong negative selection for the disease, 

reducing its incidence. Populations B and C retained the same mean trait but changed their 

genetic architecture by, for example, drift or pleiotropy. The selective origins of these differences 

may be inferred using historical allele frequencies. c) Most populations, for most traits, have the 

same effect size. However, some populations (shown here as X) may experience a higher 

measured effect size as a result of decanalization due to environmental pressure or because a 

small population size creates drift in the genetic structure that regulates the trait of interest. The 

different colours represent alternative states in each of the scenarios.  
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Figure 5: Difference between GWAS height loci across populations. a) A representation of 

allele frequency difference for height associated single nucleotide polymorphisms (SNPs) 

between North Europe and South Europe and African samples by their rank of effect size 

compared to the expected. This is a summary of previous work115 for [Au:OK?] sets of 500 

independent (r2 < 0.1) SNPs across the genome, sorted by GIANT height-association P value. 

Differences in population based minor allele frequency for many loci presents the potential for 

polygenic selection, which is shaping the genetic architecture of height. b) The relationship 

between genetic scores derived from the sum of sample allele frequencies, weighted by minor 

allele frequency for height based on existing GWAS data and composed in populations from the 

Human Gene Diversity Panel.150 Solid bars represent the actual genetic score for height 

calculated in each population in comparison to that predicted under a neutral model (with no 

marked population specific differences) and based on related populations (dashed bars).113 

Coloured areas represent the spread of sub-population specific estimates for genetic score 

nested within established population groupings.151 For an exemplar polygenic trait, these 

differences in genetic score illustrate potential evidence for polygenetic selection/adaptation. 

Figure in part a adapted, with permission, from reference 115. Figure in part b adapted, 

with permission, from reference 113.  
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Glossary: 

 

Heritable: A characteristic or trait that has a portion of variability that is accounted for by genetic 

factors.  

Phenotype: A measurable characteristic of an individual. 

Broad sense phenotypic heritability: The proportion of trait variance that is due to all genetic 

factors, including dominant and recessive factors as well as the interactions between genetic 

factors. Narrow sense heritability is the proportion of trait variance that is due to additive genetic 

factors.  

Complex traits: A trait that does not follow Mendelian inheritance patterns and is derived from 

any combination of multiple genetic factors, environmental factors and their interactions. 

Minor allele frequency: The frequency of the less frequent allele at a genetic variant in a 

population. The less frequent allele is referred to as the minor allele. 

Deep imputation: The use of large imputation reference panels to accurately estimate most 

low-frequency (1% ≤ MAF ≤ 5%) and rare (MAF < 1%) unobserved genetic variation in 

individuals who have been genome-wide genotyped. 

Phenotypic variance: The variance in a phenotype, which is often assumed to be a function of 

environmental and genetic factors, as well as their interactions. 

Single nucleotide polymorphisms (SNPs): Single base pair positions in the genome where 

two or more nucleotides occur commonly in the population. ‘Common’ is usually defined by at 

least 1% of the population carrying an alternative allele. Most often SNPs are biallelic, which 

means that the nucleotide will be one of two different alleles. 

Single nucleotide variants (SNV): Single base pair positions in the genome where there is 

variation across individuals. SNVs need not be biallelic or common. 

Genome-wide association studies (GWAS): Studies that test the association of all measured 

genetic variation across the genome with a trait or disease. GWAS usually tests the association 

of a phenotype with genetic variants that have a minor allele frequency (MAF) ≥1%, but deep 

imputation methods allow GWAS to test associations with variants at a lower MAF. 

Whole-exome sequencing (WES) studies: Studies that tests the association between genetic 

variation (usually SNVs) across the measured coding sequence of the genome with a trait or 

disease. WES can measure most coding genetic variants, regardless of minor allele frequency. 

Whole-genome sequencing (WGS) studies: Studies that test the association of genetic 

variation across the entire variable genetic sequence of the genome with a trait or disease. 
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WGS can measure most genetic variants present in the genome, regardless of minor allele 

frequency. However, certain regions are not usually measurable via sequencing, such as highly 

repetitive regions. 

Imputation reference panel: A dataset containing genetic information on a large number of 

individuals who have been whole-genome sequenced and had their haplotypes reconstructed. 

These haplotype panels enable accurate imputation of non-genotyped genetic variants in 

individuals who have undergone genome-wide genotyping. 

Haplotypes: A section of commonly varying or linked chromosomal material said to be in 

gametic phase, i.e. not punctuated by recombination at an appreciable population based 

frequency.  

Region-based testing: A single test of association between many genetic variants in a chosen 

region of the genome and a phenotype. 

Burden test: A class of region-based testing that collapses genetic variation into a single 

genetic score by measuring the total number of minor alleles across a genomic region. 

Variance component test: A single test of whether the phenotypic variance explained by a set 

of chosen genetic variants across a genomic region is zero. For example, a variance component 

test could be used to test whether all single nucleotide variants in a gene contribute to the 

variability in a phenotype. 

Single SNV association test: A genetic association test that tests variation at a single 

nucleotide variant with variation in a phenotype. This is the most common genetic association 

test and is frequently used for genome-wide genotyping data. 

Variance explained: The proportion of variance in a phenotype that is explained by a 

mathematical model. 

Linkage disequilibrium: The non-random association of alleles in a population. 

Receiver operator curve: A method to evaluate the performance of a diagnostic test for a 

binary outcome that plots the test’s sensitivity (the true positive rate) against one minus the 

test’s specificity (the false positive rate). 

Confounding: When the association between an exposure and an outcome is distorted by their 

associations with a third variable. A confounding variable is a variable that is associated with 

both the exposure and the outcome, but is not in the causal pathway between the two. A 

confounding variable could include a common cause of both the exposure and the outcome. 

Reverse causation: The phenomenon whereby the outcome influences the exposure. 
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Horizontal pleiotropy: In a Mendelian randomization study, horizontal pleiotropy is when the 

genetic variant influences the outcome in a manner independent of the risk factor. This is a 

violation of Mendelian randomization assumptions. 

Vertical pleiotropy: In a Mendelian randomization study, vertical pleiotropy is when the genetic 

variant influences the outcome through multiple biomarkers in the same pathway. This is not a 

violation of Mendelian randomization assumptions. 

Founder effect: Reduced genetic diversity that results when a population is descended from a 

small number of founders. 

Singleton: Genetic variant that is observed only once within the population studied. 

Doubletons: Genetic variants that are observed twice within the population studied. 

Lactase persistence: The continued activity of the enzyme lactase in adulthood in humans. 

Admixture mapping: A method of genetic association testing that relies on the admixture of 

populations, which occurs when individuals from two or more historically isolated populations 

interbreed.  
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Key points 

Genetic architecture of common diseases is central to the scientific and clinical goals of 

human genetics, because it directly impacts biology, disease screening diagnosis, 

prognosis and treatment. 

Genetic architecture is currently assessed by exploiting the differences in types of 

genetic variants measured through GWAS, WES and WGS. Each of these has its own 

merits and disadvantages, but all are subject to the limitations of sample size. Gene 

mapping studies should thus be tailored to the unique contributions of each of these 

technologies. 

To date, the observed genetic architecture of highly heritable diseases and traits differs 

markedly and cannot be reliably predicted. Where large sample sizes are available there 

still exist differences in detectable architecture.  

The concept of variance explained is not always relevant to individual-level risk 

prediction or drug development, whereas the genetic architecture of a given trait or 

disease can be more pertinent. 

Genetic architecture is variable in time and place and can be theoretically influenced by 

phenotypic measurement, selection and decanalization. 
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Interactions between genetic determinants of a trait or environmental influences 

contribute to genetic architecture. To date, few such interactions have been identified 

for most common diseases and traits, but this will likely change with increasing sample 

sizes. 
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