86 research outputs found
Diffuse Gamma Rays: Galactic and Extragalactic Diffuse Emission
"Diffuse" gamma rays consist of several components: truly diffuse emission
from the interstellar medium, the extragalactic background, whose origin is not
firmly established yet, and the contribution from unresolved and faint Galactic
point sources. One approach to unravel these components is to study the diffuse
emission from the interstellar medium, which traces the interactions of high
energy particles with interstellar gas and radiation fields. Because of its
origin such emission is potentially able to reveal much about the sources and
propagation of cosmic rays. The extragalactic background, if reliably
determined, can be used in cosmological and blazar studies. Studying the
derived "average" spectrum of faint Galactic sources may be able to give a clue
to the nature of the emitting objects.Comment: 32 pages, 28 figures, kapproc.cls. Chapter to the book "Cosmic
Gamma-Ray Sources," to be published by Kluwer ASSL Series, Edited by K. S.
Cheng and G. E. Romero. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Recommended from our members
The LSST DESC data challenge 1: Generation and analysis of synthetic images for next-generation surveys
Data Challenge 1 (DC1) is the first synthetic data set produced by the Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC). DC1 is designed to develop and validate data reduction and analysis and to study the impact of systematic effects that will affect the LSST data set. DC1 is comprised of r-band observations of 40 deg2 to 10 yr LSST depth. We present each stage of the simulation and analysis process: (a) generation, by synthesizing sources from cosmological N-body simulations in individual sensor-visit images with different observing conditions; (b) reduction using a development version of the LSST Science Pipelines; and (c) matching to the input cosmological catalogue for validation and testing. We verify that testable LSST requirements pass within the fidelity of DC1. We establish a selection procedure that produces a sufficiently clean extragalactic sample for clustering analyses and we discuss residual sample contamination, including contributions from inefficiency in star-galaxy separation and imperfect deblending. We compute the galaxy power spectrum on the simulated field and conclude that: (i) survey properties have an impact of 50 per cent of the statistical uncertainty for the scales and models used in DC1; (ii) a selection to eliminate artefacts in the catalogues is necessary to avoid biases in the measured clustering; and (iii) the presence of bright objects has a significant impact (2-6) in the estimated power spectra at small scales (> 1200), highlighting the impact of blending in studies at small angular scales in LSST
GLAST: Understanding the High Energy Gamma-Ray Sky
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify,
resolve, and study the high energy gamma-ray sky. Compared to previous
instruments the telescope will have greatly improved sensitivity and ability to
localize gamma-ray point sources. The ability to resolve the location and
identity of EGRET unidentified sources is described. We summarize the current
knowledge of the high energy gamma-ray sky and discuss the astrophysics of
known and some prospective classes of gamma-ray emitters. In addition, we also
describe the potential of GLAST to resolve old puzzles and to discover new
classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by
K.S. Cheng and G.E. Romer
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279
It is widely accepted that strong and variable radiation detected over all
accessible energy bands in a number of active galaxies arises from a
relativistic, Doppler-boosted jet pointing close to our line of sight. The size
of the emitting zone and the location of this region relative to the central
supermassive black hole are, however, poorly known, with estimates ranging from
light-hours to a light-year or more. Here we report the coincidence of a
gamma-ray flare with a dramatic change of optical polarization angle. This
provides evidence for co-spatiality of optical and gamma-ray emission regions
and indicates a highly ordered jet magnetic field. The results also require a
non-axisymmetric structure of the emission zone, implying a curved trajectory
for the emitting material within the jet, with the dissipation region located
at a considerable distance from the black hole, at about 10^5 gravitational
radii.Comment: Published in Nature issued on 18 February 2010. Corresponding
authors: Masaaki Hayashida and Greg Madejsk
Science-Driven Optimization of the LSST Observing Strategy
The Large Synoptic Survey Telescope is designed to provide an unprecedented optical imaging dataset that will support investigations of our Solar System, Galaxy and Universe, across half the sky and over ten years of repeated observation. However, exactly how the LSST observations will be taken (the observing strategy or "cadence") is not yet finalized. In this dynamically-evolving community white paper, we explore how the detailed performance of the anticipated science investigations is expected to depend on small changes to the LSST observing strategy. Using realistic simulations of the LSST schedule and observation properties, we design and compute diagnostic metrics and Figures of Merit that provide quantitative evaluations of different observing strategies, analyzing their impact on a wide range of proposed science projects. This is work in progress: we are using this white paper to communicate to each other the relative merits of the observing strategy choices that could be made, in an effort to maximize the scientific value of the survey. The investigation of some science cases leads to suggestions for new strategies that could be simulated and potentially adopted. Notably, we find motivation for exploring departures from a spatially uniform annual tiling of the sky: focusing instead on different parts of the survey area in different years in a "rolling cadence" is likely to have significant benefits for a number of time domain and moving object astronomy projects. The communal assembly of a suite of quantified and homogeneously coded metrics is the vital first step towards an automated, systematic, science-based assessment of any given cadence simulation, that will enable the scheduling of the LSST to be as well-informed as possible
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …