9 research outputs found

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    Search for WH production with a light Higgs boson decaying to prompt electron-jets in proton-proton collisions at s\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb-1 of data collected in 2011 with the ATLAS detector at the LHC in proton-proton collisions at s\sqrt{s}=7 TeV. One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 GeV to 140 GeV.Peer Reviewe

    Measurement of W(+/-)Z production in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb -1 of proton-proton collision data at s=7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: Λ&lt;(22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, σ&lt;(27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and σ&lt;(15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Λ and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. © 2012 CERN

    Search for scalar leptoquarks in pp\mathit{pp} collisions at s=13\sqrt{s}=13 TeV with the ATLAS experiment

    Get PDF
    An inclusive search for a new-physics signature of lepton-jet resonances has been performed by the ATLAS experiment. Scalar leptoquarks, pair-produced in pp collisions at s√ = 13 TeV at the large hadron collider, have been considered. An integrated luminosity of 3.2 fb(−)(1), corresponding to the full 2015 dataset was used. First (second) generation leptoquarks were sought in events with two electrons (muons) and two or more jets. The observed event yield in each channel is consistent with Standard Model background expectations. The observed (expected) lower limits on the leptoquark mass at 95% confidence level are 1100 and 1050 GeV (1160 and 1040 GeV) for first and second generation leptoquarks, respectively, assuming a branching ratio into a charged lepton and a quark of 100%. Upper limits on the aforementioned branching ratio are also given as a function of leptoquark mass. Compared with the results of earlier ATLAS searches, the sensitivity is increased for leptoquark masses above 860 GeV, and the observed exclusion limits confirm and extend the published results

    Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2

    Get PDF
    International audienceWith the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13  TeV\text {TeV} for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb1^{-1} of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13  TeV\text {TeV} . The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV\text {GeV} is quantified using a novel, data-driven, method. The method uses the energy loss,  dE/dx{\text { d}}{} \textit{E}/d\textit{x} , to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.)0.061 \pm 0.006\ {\text {(stat.)}} \pm 0.014\ {\text {(syst.)}} and 0.093±0.017 (stat.)±0.021 (syst.)0.093 \pm 0.017\ {\text {(stat.)}}\pm 0.021\ {\text {(syst.)}} for jet transverse momenta of 200–400  GeV\text {GeV} and 1400–1600  GeV\text {GeV} , respectively

    Search for diphoton events with large missing transverse momentum in 1 fb<sup>-1</sup> of 7 TeV proton–proton collision data with the ATLAS detector

    Get PDF
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb−1of proton–proton collision data at &#8730;s=7  TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: &#963;&#60;(22–129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, &#963;&#60;(27–91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and &#963;&#60; (15–27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale &#8743; and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: sigma < (22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, sigma < (27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and sigma < (15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Lambda and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
    corecore