512 research outputs found

    Plant peroxidases : biochemistry and physiology

    Get PDF
    Resistant (Reba B50) and susceptible (Acala 44) cotton plants were investigated for intratissular growth of bacterial populations and peroxidase (POx) activity, after infection of cotyledons with races 18 or 20 from #Xanthomonas (#Axonopodis)campestris) campestris pv. #malvacearum$. Considerable multiplication of the bacterial population was noticed in the compatible interaction (Acala 44 / Xcm race 18) ; it was much lower during the incompatible interaction when race 18 was infiltrated into cotyledons of Reba B50. An intermediate level of bacterial growth was obtained when Reba B50 was infiltrated with race known to overcome resistance of this line. High increase in POx activity occurred into the infected cotyledons during incompatible interaction, while the increase was much lower when the interactions were compatible. On leaves, a similar and significant difference in enzyme activity was also observed indicating that the "peroxidase response" was systemically induced in entire resistant plants. Five isoperoxidases were evidenced by IEF in both lines, whether they were infected or not. But only two of them accounted for the increase in activity in infected resistant cotyledons. Microscopy revealed that POx activity, detected at the infection sites two hours after infiltration of the resistant line was mainly located in cell walls and the middle lamella bordering intercellular spaces. Our data indicate that bacterial infection of cotton plants enhanced the activity of two of the preexistent isoperoxidases in resistant plants and suggest that stimulation of POx activity is associated with resistance mechanisms. (Résumé d'auteur

    Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton

    Get PDF
    Interactions between cotton cotyledons and #Xanthomonas campestris pv. #malvacearum were examined. During an incompatible interaction, fluorescence microscopy revealed that flavonoid compounds accumulated within 10 h after inoculation. Electron micrographs showed ultrastructural modifications of cells that exhibited an intense fluorescence suggesting the presence of flavonoids. Phenol-like molecules were produced by cells of infection sites and were found in paramural areas within papillae enriched with callose and in host cell walls and middle lamellae. Histochemistry showed that peroxidase activity and terpenoids were detected in the infected resistant plants, 4 and 48 h after inoculation, respectively. In contrast, no changes in the deposits of lignin, suberin, and catechin were seen in either the infected susceptible or resistant lines. We suggest that early flavonoid accumulation is associated with the hypersensitive reaction of cotton cotyledons to #X. campestris pv. #malvacearum. The activity of wall-bound peroxidases may play a role in the incorporation of flavonoids in cell walls and paramural papillae. (Résumé d'auteur

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    RNAi-induced targeted silencing of developmental control genes during chicken embryogenesis

    Get PDF
    The RNA interference technique is a powerful tool to understand gene function. Intriguingly, RNA interference cannot only be used for cells in vitro, but also in living organisms. Here, we have adapted the method for use in the chick embryo. However, this technique is limited by the uncertainty in predicting the RNAi transfection efficiency and site in the embryo. Hence, we elaborated a modified vector system, pEGFP-shRNA, which can coexpress enhanced green fluorescent protein (EGFP) and short hairpin RNA (shRNA) simultaneously to facilitate analysis of gene silencing in chicken embryos. We tested the silencing of two highly conserved genes (cAxin2, cParaxis), which play crucial roles in chicken embryonic developmental processes. For each target gene, four to five small DNA inserts, each of them encoding one shRNA, were selected and cloned individually to the vector downstream of the Pol III promoter (either human H1 or U6 promoter), which shared with highly conserved motifs in human and chicken. The pEGFP-shRNA constructs were electroporated into the neural tube or somites. After subsequent re-incubation of 24 h, the EGFP expression, with green fluorescent signal, indicated the transfected regions in the neural tube or somites. The EGFP expressing embryos were further submitted into the process of in situ hybridization for examination of the silencing effects. The results show that the EGFP signal in transfected areas correlated with the silencing of the target genes (cAxin2, cParaxis). The cAxin2 expression was inhibited by shRNAs of either targeting the RGS domain or the DAX domain coding region. The cParaxis mRNA level in transgenic somites and the related migratory myogenic population was also reduced. The results suggest that our novel dual expression EGFP-shRNA system opens a new possibility to study gene function in a convenient and efficient way. © 2005 Elsevier Inc. All rights reserved

    The effect of oxygen stoichiometry on electrical transport and magnetic properties of La0.9Te0.1MnOy

    Full text link
    The effect of the variation of oxygen content on structural, magnetic and transport properties in the electron-doped manganites La0.9Te0.1MnOy has been investigated. All samples show a rhombohedral structure with the space group . The Curie temperature decreases and the paramagnetic-ferromagnetic (PM-FM) transition becomes broader with the reduction of oxygen content. The resistivity of the annealed samples increases slightly with a small reduction of oxygen content. Further reduction in the oxygen content, the resistivity maximum increases by six orders of magnitude compared with that of the as-prepared sample, and the r(T) curves of samples with y = 2.86 and y = 2.83 display the semiconducting behavior () in both high-temperature PM phase and low-temperature FM phase, which is considered to be related to the appearance of superexchange ferromagnetism (SFM) and the localization of carriers. The results are discussed in terms of the combined effects of the increase in the Mn2+/(Mn2++Mn3+) ratio, the partial destruction of double exchange (DE) interaction, and the localization of carriers due to the introduction of oxygen vacancies in the Mn-O-Mn network.Comment: 20 pages, 8 figure

    Observing Supermassive Black Holes across cosmic time: from phenomenology to physics

    Full text link
    In the last decade, a combination of high sensitivity, high spatial resolution observations and of coordinated multi-wavelength surveys has revolutionized our view of extra-galactic black hole (BH) astrophysics. We now know that supermassive black holes reside in the nuclei of almost every galaxy, grow over cosmological times by accreting matter, interact and merge with each other, and in the process liberate enormous amounts of energy that influence dramatically the evolution of the surrounding gas and stars, providing a powerful self-regulatory mechanism for galaxy formation. The different energetic phenomena associated to growing black holes and Active Galactic Nuclei (AGN), their cosmological evolution and the observational techniques used to unveil them, are the subject of this chapter. In particular, I will focus my attention on the connection between the theory of high-energy astrophysical processes giving rise to the observed emission in AGN, the observable imprints they leave at different wavelengths, and the methods used to uncover them in a statistically robust way. I will show how such a combined effort of theorists and observers have led us to unveil most of the SMBH growth over a large fraction of the age of the Universe, but that nagging uncertainties remain, preventing us from fully understating the exact role of black holes in the complex process of galaxy and large-scale structure formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and Treves A. (Eds), 2015, Springer International Publishing AG, Cha

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    • 

    corecore