203 research outputs found

    Mini-laparoscopic versus laparoscopic approach to appendectomy

    Get PDF
    BACKGROUND: The purpose of this clinical study is to evaluate the feasibility of using 2-mm laparoscopic instruments to perform an appendectomy in patients with clinically suspected acute appendicitis and compare the outcome of this mini-laparoscopic or "needlescopic" approach to the conventional laparoscopic appendectomy. METHODS: Two groups of patients undergoing appendectomy over 24 months were studied. In the first group, needlescopic appendectomy was performed in 15 patients by surgeons specializing in advanced laparoscopy. These patients were compared with the second or control group that included 21 consecutive patients who underwent laparoscopic appendectomy. We compared the patients' demographic data, operative findings, complications, postoperative pain medicine requirements, length of hospital stay, and recovery variables. Differences were considered statistically significant at a p-value < 0.05. RESULTS: Patient demographics, history of previous abdominal surgery, and operative findings were similar in both groups. There was no conversion to open appendectomy in either group. No postoperative morbidity or mortality occurred in either group. The needlescopic group had a significantly shorter mean operative time (p = 0.02), reduced postoperative narcotics requirements (p = 0.05), shorter hospital stay (p = 0.04), and quicker return to work (p = 0.03) when compared with the laparoscopic group. CONCLUSIONS: We conclude that the needlescopic technique is a safe and effective approach to appendectomy. When performed by experienced laparoscopic surgeons, the needlescopic technique results in significantly shorter postoperative convalescence and a prompt recovery

    Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?

    Get PDF
    In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice

    Examining the BMI-mortality relationship using fractional polynomials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many previous studies estimating the relationship between body mass index (BMI) and mortality impose assumptions regarding the functional form for BMI and result in conflicting findings. This study investigated a flexible data driven modelling approach to determine the nonlinear and asymmetric functional form for BMI used to examine the relationship between mortality and obesity. This approach was then compared against other commonly used regression models.</p> <p>Methods</p> <p>This study used data from the National Health Interview Survey, between 1997 and 2000. Respondents were linked to the National Death Index with mortality follow-up through 2005. We estimated 5-year all-cause mortality for adults over age 18 using the logistic regression model adjusting for BMI, age and smoking status. All analyses were stratified by sex. The multivariable fractional polynomials (MFP) procedure was employed to determine the best fitting functional form for BMI and evaluated against the model that includes linear and quadratic terms for BMI and the model that groups BMI into standard weight status categories using a deviance difference test. Estimated BMI-mortality curves across models were then compared graphically.</p> <p>Results</p> <p>The best fitting adjustment model contained the powers -1 and -2 for BMI. The relationship between 5-year mortality and BMI when estimated using the MFP approach exhibited a J-shaped pattern for women and a U-shaped pattern for men. A deviance difference test showed a statistically significant improvement in model fit compared to other BMI functions. We found important differences between the MFP model and other commonly used models with regard to the shape and nadir of the BMI-mortality curve and mortality estimates.</p> <p>Conclusions</p> <p>The MFP approach provides a robust alternative to categorization or conventional linear-quadratic models for BMI, which limit the number of curve shapes. The approach is potentially useful in estimating the relationship between the full spectrum of BMI values and other health outcomes, or costs.</p

    Analysis of large oxygenated and nitrated polycyclic aromatic hydrocarbons formed under simulated diesel engine exhaust conditions (by compound fingerprints with SPE/LC-API-MS)

    Get PDF
    The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs

    UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM

    Interleukin-8 Is Activated in Patients with Chronic Liver Diseases and Associated with Hepatic Macrophage Accumulation in Human Liver Fibrosis

    Get PDF
    BACKGROUND: Interleukin-8 (IL-8, CXCL8) is a potent chemoattractant for neutrophils and contributes to acute liver inflammation. Much less is known about IL-8 in chronic liver diseases (CLD), but elevated levels were reported from alcoholic and hepatitis C-related CLD. We investigated the regulation of IL-8, its receptors CXCR1 and CXCR2 and possible IL-8 responding cells in CLD patients. METHODOLOGY: Serum IL-8 levels were measured in CLD patients (n = 200) and healthy controls (n = 141). Intrahepatic IL-8, CXCR1 and CXCR2 gene expression was quantified from liver samples (n = 41), alongside immunohistochemical neutrophil (MPO) and macrophage (CD68) stainings. CXCR1 and CXCR2 expression was analyzed on purified monocytes from patients (n = 111) and controls (n = 31). In vitro analyses explored IL-8 secretion by different leukocyte subsets. PRINCIPAL FINDINGS: IL-8 serum levels were significantly increased in CLD patients, especially in end-stage cirrhosis. Interestingly, patients with cholestatic diseases exhibited highest IL-8 serum concentrations. IL-8 correlated with liver function, inflammatory cytokines and non-invasive fibrosis markers. Intrahepatically, IL-8 and CXCR1 expression were strongly up-regulated. However, intrahepatic IL-8 could only be associated to neutrophil infiltration in patients with primary biliary cirrhosis (PBC). In non-cholestatic cirrhosis, increased IL-8 and CXCR1 levels were associated with hepatic macrophage accumulation. In line, CXCR1, but not CXCR2 or CXCR3, expression was increased on circulating monocytes from cirrhotic patients. Moreover, monocyte-derived macrophages from CLD patients, especially the non-classical CD16⁺ subtype, displayed enhanced IL-8 secretion in vitro. CONCLUSIONS: IL-8 is strongly activated in CLD, thus likely contributing to hepatic inflammation. Our study suggests a novel role of IL-8 for recruitment and activation of hepatic macrophages via CXCR1 in human liver cirrhosis

    Development of a Model System to Identify Differences in Spring and Winter Oat

    Get PDF
    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding

    Enteric Infection with Citrobacter rodentium Induces Coagulative Liver Necrosis and Hepatic Inflammation Prior to Peak Infection and Colonic Disease

    Get PDF
    Acute and chronic forms of inflammation are known to affect liver responses and susceptibility to disease and injury. Furthermore, intestinal microbiota has been shown critical in mediating inflammatory host responses in various animal models. Using C. rodentium, a known enteric bacterial pathogen, we examined liver responses to gastrointestinal infection at various stages of disease pathogenesis. For the first time, to our knowledge, we show distinct liver pathology associated with enteric infection with C. rodentium in C57BL/6 mice, characterized by increased inflammation and hepatitis index scores as well as prominent periportal hepatocellular coagulative necrosis indicative of thrombotic ischemic injury in a subset of animals during the early course of C. rodentium pathogenesis. Histologic changes in the liver correlated with serum elevation of liver transaminases, systemic and liver resident cytokines, as well as signal transduction changes prior to peak bacterial colonization and colonic disease. C. rodentium infection in C57BL/6 mice provides a potentially useful model to study acute liver injury and inflammatory stress under conditions of gastrointestinal infection analogous to enteropathogenic E. coli infection in humans.United States. Army Research Office (Institute for Soldier Nanotechnology grant 6915539 (SRT))National Institutes of Health (U.S.) (Grant P01 CA026731)National Institutes of Health (U.S.) (Grant P30 ES02109)National Institutes of Health (U.S.) (Toxicology Training grant ES-070220

    5-Fluorouracil Induced Intestinal Mucositis via Nuclear Factor-κB Activation by Transcriptomic Analysis and In Vivo Bioluminescence Imaging

    Get PDF
    5-Fluorouracil (5-FU) is a commonly used drug for the treatment of malignant cancers. However, approximately 80% of patients undergoing 5-FU treatment suffer from gastrointestinal mucositis. The aim of this report was to identify the drug target for the 5-FU-induced intestinal mucositis. 5-FU-induced intestinal mucositis was established by intraperitoneally administering mice with 100 mg/kg 5-FU. Network analysis of gene expression profile and bioluminescent imaging were applied to identify the critical molecule associated with 5-FU-induced mucositis. Our data showed that 5-FU induced inflammation in the small intestine, characterized by the increased intestinal wall thickness and crypt length, the decreased villus height, and the increased myeloperoxidase activity in tissues and proinflammatory cytokine production in sera. Network analysis of 5-FU-affected genes by transcriptomic tool showed that the expression of genes was regulated by nuclear factor-κB (NF-κB), and NF-κB was the central molecule in the 5-FU-regulated biological network. NF-κB activity was activated by 5-FU in the intestine, which was judged by in vivo bioluminescence imaging and immunohistochemical staining. However, 5-aminosalicylic acid (5-ASA) inhibited 5-FU-induced NF-κB activation and proinflammatory cytokine production. Moreover, 5-FU-induced histological changes were improved by 5-ASA. In conclusion, our findings suggested that NF-κB was the critical molecule associated with the pathogenesis of 5-FU-induced mucositis, and inhibition of NF-κB activity ameliorated the mucosal damage caused by 5-FU

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition
    corecore