90 research outputs found

    Occurrence and Antimicrobial Susceptibility Profiles of Streptococcus equi subsp. zooepidemicus Strains Isolated from Mares with Fertility Problems

    Get PDF
    Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), is a ÎČ-hemolytic Streptococcus belonging to the Lancefield group C; it is a rare human pathogen, but in horses, it is frequently associated with endometritis. This study aimed to isolate S. zooepidemicus strains, associated with bacterial endometritis in mares, and to define their antimicrobial resistance profile. Twenty-three isolates were recovered from one hundred ninety-six equine uterine swabs (11.7%). Bacterial identification was carried out by Api 20 Strep and confirmed by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), while antimicrobial susceptibility testing was performed by disk diffusion method on Muller Hinton agar plates. The antibiotic resistance profiles of the isolates revealed a high percentage of resistance to amikacin (95.6%), ampicillin (73.9%) and tetracycline (69.6%), while ceftiofur and ceftriaxone were highly effective with 82.6% and 78.3% of the isolates inhibited, respectively. An intriguing value of resistance to penicillin (34.8%), which represents the first-choice antibiotic in equine S. zooepidemicus infections, was observed. Furthermore, a high prevalence of multidrug-resistant strains (82.6%) was recorded. Continuous surveillance of this potential zoonotic pathogen and an appropriate antimicrobial stewardship program with the promotion of correct use of antimicrobials, after a proper diagnosis, are needed to allow an effective therapy

    Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75

    Get PDF
    Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs

    Development and Initial Validation of a Self-Scored COPD Population Screener Questionnaire (COPD-PS)

    Get PDF
    COPD has a profound impact on daily life, yet remains underdiagnosed and undertreated. We set out to develop a brief, reliable, self-scored questionnaire to identify individuals likely to have COPD. COPD-PSℱ development began with a list of concepts identified for inclusion using expert opinion from a clinician working group comprised of pulmonologists (n = 5) and primary care clinicians (n = 5). A national survey of 697 patients was conducted at 12 practitioner sites. Logistic regression identified items discriminating between patients with and without fixed airflow obstruction (AO, postbronchodilator FEV1/FVC < 70%). ROC analyses evaluated screening accuracy, compared scoring options, and assessed concurrent validity. Convergent and discriminant validity were assessed via COPD-PS and SF-12v2 score correlations. For known-groups validation, COPD-PS differences between clinical groups were tested. Test-retest reliability was evaluated in a 20% sample. Of 697 patients surveyed, 295 patients met expert review criteria for spirometry performance; 38% of these (n = 113) had results indicating AO. Five items positively predicted AO (p < 0.0001): breathlessness, productive cough, activity limitation, smoking history, and age. COPD-PS scores accurately classified AO status (area under ROC curve = 0.81) and reliable (r = 0.91). Patients with spirometry indicative of AO scored significantly higher (6.8, SD = 1.9; p < 0.0001) than patients without AO (4.0, SD = 2.3). Higher scores were associated with more severe AO, bronchodilator use, and overnight hospitalization for breathing problems. With the prevalence of COPD in the studied cohort, a score on the COPD-PS of greater than five was associated with a positive predictive value of 56.8% and negative predictive value of 86.4%. The COPD-PS accurately classified physician-reported COPD (AUC = 0.89). The COPD-PS is a brief, accurate questionnaire that can identify individuals likely to have COPD

    Transglutaminase 2 Contributes to Apoptosis Induction in Jurkat T Cells by Modulating Ca(2+) Homeostasis via Cross-Linking RAP1GDS1

    Get PDF
    BACKGROUND: Transglutaminase 2 (TG2) is a protein cross-linking enzyme known to be associated with the in vivo apoptosis program of T cells. However, its role in the T cell apoptosis program was not investigated yet. RESULTS: Here we report that timed overexpression of both the wild type (wt) and the cross-linking mutant of TG2 induced apoptosis in Jurkat T cells, the wt being more effective. Part of TG2 colocalised with mitochondria. WtTG2-induced apoptosis was characterized by enhanced mitochondrial Ca(2+) uptake. Ca(2+)-activated wtTG2 cross-linked RAP1, GTP-GDP dissociation stimulator 1, an unusual guanine exchange factor acting on various small GTPases, to induce a yet uncharacterized signaling pathway that was able to promote the Ca(2+) release from the endoplasmic reticulum via both Ins3P and ryanodine sensitive receptors leading to a consequently enhanced mitochondrial Ca(2+)uptake. CONCLUSIONS: Our data indicate that TG2 might act as a Ca(2+) sensor to amplify endoplasmic reticulum-derived Ca(2+) signals to enhance mitochondria Ca(2+) uptake. Since enhanced mitochondrial Ca(2+) levels were previously shown to sensitize mitochondria for various apoptotic signals, our data demonstrate a novel mechanism through which TG2 can contribute to the induction of apoptosis in certain cell types. Since, as compared to knock out cells, physiological levels of TG2 affected Ca(2+) signals in mouse embryonic fibroblasts similar to Jurkat cells, our data might indicate a more general role of TG2 in the regulation of mitochondrial Ca(2+) homeostasis

    Transglutaminase 2 at the Crossroads between Cell Death and Survival

    Get PDF
    n/

    Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts

    Get PDF
    Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.Project ON.2 SR&TD Integrated Program (NORTE-07-0124-FEDER-000021), co-funded by North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund (ERDF) and also supported by Fundação para a CiĂȘncia e Tecnologia through the project POCI-01-0145-FEDER-016818 (PTDC/NEU-NMC/3648/2014)info:eu-repo/semantics/publishedVersio

    Transglutaminase 2 is involved in autophagosome maturation

    Get PDF
    L’autofagia Ăš un processo cellulare altamente conservato responsabile della degradazione di proteine ed organelli cellulari. L’autofagia avviene in maniera basale in condizioni normali, ma puĂČ essere indotta in risposta ad uno stress, come ad esempio deprivazione di nutrienti, ipossia, disfunzioni mitocondriali e infezioni. La transglutaminasi tissutale (TG2) si accumula, sia in vivo che in vitro, ad alti livelli in cellule in condizioni di stress. Su questa base, abbiamo deciso di studiare se la TG2 potesse giocare un ruolo nel processo autofagico. A questo proposito abbiamo utilizzato topi “knockout” per la TG2 e linee cellulari in cui l’enzima fosse sia assente o iper-espresso. La mancanza della TG2, sia in vivo che in vitro, provocava un evidente accumulo dell’isoforma LC3 II presente sugli autofagosomi, suggerendo una notevole induzione di autofagia. Al contrario, la formazione in queste stesse cellule di vescicole acide era molto scarsa, indicando un difetto nella maturazione finale degli autofagolisosomi. Infatti, trattando le cellule con NH4Cl, un inibitore dell’attivitĂ  lisosomale, si aveva un marcato accumulo di LC3 II e di mitocondri danneggiati simile a quello osservato nelle cellule senza la TG2. Questi dati indicano un ruolo della TG2 nelle modificazioni post-traduzionali di proteine coinvolte nella maturazione degli autofagosomi accompagnati dall’accumulo di molti mitocondri danneggiati.Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g., nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. “Tissue” transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria

    Transglutaminase 2 is involved in autophagosome maturation

    No full text
    L’autofagia Ăš un processo cellulare altamente conservato responsabile della degradazione di proteine ed organelli cellulari. L’autofagia avviene in maniera basale in condizioni normali, ma puĂČ essere indotta in risposta ad uno stress, come ad esempio deprivazione di nutrienti, ipossia, disfunzioni mitocondriali e infezioni. La transglutaminasi tissutale (TG2) si accumula, sia in vivo che in vitro, ad alti livelli in cellule in condizioni di stress. Su questa base, abbiamo deciso di studiare se la TG2 potesse giocare un ruolo nel processo autofagico. A questo proposito abbiamo utilizzato topi “knockout” per la TG2 e linee cellulari in cui l’enzima fosse sia assente o iper-espresso. La mancanza della TG2, sia in vivo che in vitro, provocava un evidente accumulo dell’isoforma LC3 II presente sugli autofagosomi, suggerendo una notevole induzione di autofagia. Al contrario, la formazione in queste stesse cellule di vescicole acide era molto scarsa, indicando un difetto nella maturazione finale degli autofagolisosomi. Infatti, trattando le cellule con NH4Cl, un inibitore dell’attivitĂ  lisosomale, si aveva un marcato accumulo di LC3 II e di mitocondri danneggiati simile a quello osservato nelle cellule senza la TG2. Questi dati indicano un ruolo della TG2 nelle modificazioni post-traduzionali di proteine coinvolte nella maturazione degli autofagosomi accompagnati dall’accumulo di molti mitocondri danneggiati.Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g., nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. “Tissue” transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria
    • 

    corecore