48 research outputs found

    Outcomes after hip or knee replacement surgery for osteoarthritis: A prospective cohort study comparing patients quality of life before and after surgery with age-related population norms

    Get PDF
    Objective: To compare the health-related quality of life of people with osteoarthritis before and after primary total hip and knee replacement surgery with that of the general Australian population. Design: A prospective cohort study. Setting: Three Sydney hospitals, public and private. Participants: Patients with osteoarthritis undergoing primary total hip (n = 59) and knee (n = 92) joint replacement surgery. Main outcome measure: Medical Outcomes Study Short Form (SF-36) scores before and 12 months after joint replacement surgery (compared with population norms). Results: Patients in each age group showed a significant improvement in health-related quality of life after joint replacement surgery in most scales of the SF-36, particularly physical function, role physical and bodily pain. SF-36 scores for the 42 hip-replacement patients aged 55-74 years improved to equal or exceed the population norm on all scales. SF-36 scores of the 52 knee replacement patients aged 55-74 years improved, but physical function and bodily pain scores remained significantly worse than the population norm. SF-36 scores for both hip (n = 17) and knee (n= 40) replacement patients aged 75 years and over improved significantly, becoming similar to population norms for this age group. Conclusions: Total hip or knee replacement for osteoarthritis significantly improves patient health and well-being at 12 months after surgery. Age alone should not be a barrier to surgery

    Identifying chondroprotective diet-derived bioactives and investigating their synergism

    Get PDF
    Osteoarthritis (OA) is a multifactorial disease and nutrition is a modifiable factor that may contribute to disease onset or progression. A detailed understanding of mechanisms through which diet-derived bioactive molecules function and interact in OA is needed. We profiled 96 diet-derived, mainly plant-based bioactives using an in vitro model in chondrocytes, selecting four candidates for further study. We aimed to determine synergistic interactions between bioactives that affected the expression of key genes in OA. Selected bioactives, sulforaphane, apigenin, isoliquiritigenin and luteolin, inhibited one or more interleukin-1-induced metalloproteinases implicated in OA (MMP1, MMP13, ADAMTS4, ADAMTS5). Isoliquiritigenin and luteolin showed reactive oxygen species scavenging activity in chondrocytes whereas sulforaphane had no effect and apigenin showed only a weak trend. Sulforaphane inhibited the IL-1/NFκB and Wnt3a/TCF/Lef pathways and increased TGFβ/Smad2/3 and BMP6/Smad1/5/8 signalling. Apigenin showed potent inhibition of the IL-1/NFκB and TGFβ/Smad2/3 pathways, whereas luteolin showed only weak inhibition of the IL-1/NFκB pathway. All four bioactives inhibited cytokine-induced aggrecan loss from cartilage tissue explants. The combination of sulforaphane and isoliquiritigenin was synergistic for inhibiting MMP13 gene expression in chondrocytes. We conclude that dietary-derived bioactives may be important modulators of cartilage homeostasis and synergistic relationships between bioactives may have an anti-inflammatory and chondroprotective role

    Computational Modelling of Tissue-Engineered Cartilage Constructs

    Get PDF
    Cartilage is a fundamental tissue to ensure proper motion between bones and damping of mechanical loads. This tissue often suffers damage and has limited healing capacity due to its avascularity. In order to replace surgery and replacement of joints by metal implants, tissue engineered cartilage is seen as an attractive alternative. These tissues are obtained by seeding chondrocytes or mesenchymal stem cells in scaffolds and are given certain stimuli to improve establishment of mechanical properties similar to the native cartilage. However, tissues with ideal mechanical properties were not obtained yet. Computational models of tissue engineered cartilage growth and remodelling are invaluable to interpret and predict the effects of experimental designs. The current model contribution in the field will be presented in this chapter, with a focus on the response to mechanical stimulation, and the development of fully coupled modelling approaches incorporating simultaneously solute transport and uptake, cell growth, production of extracellular matrix and remodelling of mechanical properties.publishe

    Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021

    Get PDF
    Background Rheumatoid arthritis is a chronic autoimmune inflammatory disease associated with disability and premature death. Up-to-date estimates of the burden of rheumatoid arthritis are required for health-care planning, resource allocation, and prevention. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, we provide updated estimates of the prevalence of rheumatoid arthritis and its associated deaths and disability-adjusted life-years (DALYs) by age, sex, year, and location, with forecasted prevalence to 2050. Methods Rheumatoid arthritis prevalence was estimated in 204 countries and territories from 1990 to 2020 using Bayesian meta-regression models and data from population-based studies and medical claims data (98 prevalence and 25 incidence studies). Mortality was estimated from vital registration data with the Cause of Death Ensemble model (CODEm). Years of life lost (YLL) were calculated with use of standard GBD lifetables, and years lived with disability (YLDs) were estimated from prevalence, a meta-analysed distribution of rheumatoid arthritis severity, and disability weights. DALYs were calculated by summing YLLs and YLDs. Smoking was the only risk factor analysed. Rheumatoid arthritis prevalence was forecast to 2050 by logistic regression with Socio-Demographic Index as a predictor, then multiplying by projected population estimates. Findings In 2020, an estimated 17·6 million (95% uncertainty interval 15·8–20·3) people had rheumatoid arthritis worldwide. The age-standardised global prevalence rate was 208·8 cases (186·8–241·1) per 100 000 population, representing a 14·1% (12·7–15·4) increase since 1990. Prevalence was higher in females (age-standardised female-to-male prevalence ratio 2·45 [2·40–2·47]). The age-standardised death rate was 0·47 (0·41–0·54) per 100 000 population (38 300 global deaths [33 500–44 000]), a 23·8% (17·5–29·3) decrease from 1990 to 2020. The 2020 DALY count was 3 060 000 (2 320 000–3 860 000), with an age-standardised DALY rate of 36·4 (27·6–45·9) per 100 000 population. YLDs accounted for 76·4% (68·3–81·0) of DALYs. Smoking risk attribution for rheumatoid arthritis DALYs was 7·1% (3·6–10·3). We forecast that 31·7 million (25·8–39·0) individuals will be living with rheumatoid arthritis worldwide by 2050. Interpretation Rheumatoid arthritis mortality has decreased globally over the past three decades. Global age-standardised prevalence rate and YLDs have increased over the same period, and the number of cases is projected to continue to increase to the year 2050. Improved access to early diagnosis and treatment of rheumatoid arthritis globally is required to reduce the future burden of the disease.publishedVersio

    The personal and contextual contributors to school belongingness among primary school students

    Get PDF
    School belongingness has gained currency among educators and school health professionals as an important determinant of adolescent health. The current cross-sectional study presents the 15 most significant personal and contextual factors that collectively explain 66.4% (two-thirds) of the variability in 12-year old students' perceptions of belongingness in primary school. The study is part of a larger longitudinal study investigating the factors associated with student adjustment in the transition from primary to secondary school. The study found that girls and students with disabilities had higher school belongingness scores than boys, and their typically developing counterparts respectively; and explained 2.5% of the variability in school belongingness. The majority (47.1% out of 66.4%) of the variability in school belongingness was explained by student personal factors, such as social acceptance, physical appearance competence, coping skills, and social affiliation motivation; followed by parental expectations (3% out of 66.4%), and school-based factors (13.9% out of 66.4%) such as, classroom involvement, task-goal structure, autonomy provision, cultural pluralism, and absence of bullying. Each of the identified contributors of primary school belongingness can be shaped through interventions, system changes, or policy reforms

    Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Osteoarthritis is the most common form of arthritis in adults, characterised by chronic pain and loss of mobility. Osteoarthritis most frequently occurs after age 40 years and prevalence increases steeply with age. WHO has designated 2021–30 the decade of healthy ageing, which highlights the need to address diseases such as osteoarthritis, which strongly affect functional ability and quality of life. Osteoarthritis can coexist with, and negatively effect, other chronic conditions. Here we estimate the burden of hand, hip, knee, and other sites of osteoarthritis across geographies, age, sex, and time, with forecasts of prevalence to 2050. Methods In this systematic analysis for the Global Burden of Disease Study, osteoarthritis prevalence in 204 countries and territories from 1990 to 2020 was estimated using data from population-based surveys from 26 countries for knee osteoarthritis, 23 countries for hip osteoarthritis, 42 countries for hand osteoarthritis, and US insurance claims for all of the osteoarthritis sites, including the other types of osteoarthritis category. The reference case definition was symptomatic, radiographically confirmed osteoarthritis. Studies using alternative definitions from the reference case definition (for example self-reported osteoarthritis) were adjusted to reference using regression models. Osteoarthritis severity distribution was obtained from a pooled meta-analysis of sources using the Western Ontario and McMaster Universities Arthritis Index. Final prevalence estimates were multiplied by disability weights to calculate years lived with disability (YLDs). Prevalence was forecast to 2050 using a mixed-effects model. Findings Globally, 595 million (95% uncertainty interval 535–656) people had osteoarthritis in 2020, equal to 7·6% (95% UI 6·8–8·4) of the global population, and an increase of 132·2% (130·3–134·1) in total cases since 1990. Compared with 2020, cases of osteoarthritis are projected to increase 74·9% (59·4–89·9) for knee, 48·6% (35·9–67·1) for hand, 78·6% (57·7–105·3) for hip, and 95·1% (68·1–135·0) for other types of osteoarthritis by 2050. The global age-standardised rate of YLDs for total osteoarthritis was 255·0 YLDs (119·7–557·2) per 100 000 in 2020, a 9·5% (8·6–10·1) increase from 1990 (233·0 YLDs per 100 000, 109·3–510·8). For adults aged 70 years and older, osteoarthritis was the seventh ranked cause of YLDs. Age-standardised prevalence in 2020 was more than 5·5% in all world regions, ranging from 5677·4 (5029·8–6318·1) per 100 000 in southeast Asia to 8632·7 (7852·0–9469·1) per 100 000 in high-income Asia Pacific. Knee was the most common site for osteoarthritis. High BMI contributed to 20·4% (95% UI –1·7 to 36·6) of osteoarthritis. Potentially modifiable risk factors for osteoarthritis such as recreational injury prevention and occupational hazards have not yet been explored in GBD modelling. Interpretation Age-standardised YLDs attributable to osteoarthritis are continuing to rise and will lead to substantial increases in case numbers because of population growth and ageing, and because there is no effective cure for osteoarthritis. The demand on health systems for care of patients with osteoarthritis, including joint replacements, which are highly effective for late stage osteoarthritis in hips and knees, will rise in all regions, but might be out of reach and lead to further health inequity for individuals and countries unable to afford them. Much more can and should be done to prevent people getting to that late stage

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. Methods We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. Findings Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2)

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.

    Get PDF
    The Global Burden of Diseases, Injuries and Risk Factors 2017 includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. METHODS: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting
    corecore