457 research outputs found

    An In-Depth Case Study of a Prospective Black Male Teacher Candidate with an Undisclosed Disability at a Historically Black College and University

    Get PDF
    As scholarship of Black male collegians is growing, there is limited research attentive to Black males with disabilities and in teacher education programs. The research focused on pre-service Black male teachers with disabilities attending HBCUs and the federal laws impacting their education and supports is absent. This research study fills the void by examining the individual experiences of a Black male pre-service teacher with a disability attending an HBCU. The research team used Black males with disability theory and single-subject case study methodology to describe Christopher “CJ” Jackson’s journey navigating his program of study as an English education major. Four main themes emerged in the study of CJ that capture his collegiate and teacher education experiences: a) influences to become an English teacher, b) field experience issues, c) inconsistent academic performance, and d) postsecondary academic adjustments. The research team offers recommendations for supporting pre-service Black male teachers in college and in teacher education programs

    Sarcolemma-localized nNOS is required to maintain activity after mild exercise

    Full text link
    Many neuromuscular conditions are characterized by an exaggerated exercise- induced fatigue response that is disproportionate to activity level. This fatigue is not necessarily correlated with greater central or peripheral fatigue in patients(1), and some patients experience severe fatigue without any demonstrable somatic disease(2). Except in myopathies that are due to specific metabolic defects, the mechanism underlying this type of fatigue remains unknown(2). With no treatment available, this form of inactivity is a major determinant of disability(3). Here we show, using mouse models, that this exaggerated fatigue response is distinct from a loss in specific force production by muscle, and that sarcolemma-localized signalling by neuronal nitric oxide synthase ( nNOS) in skeletal muscle is required to maintain activity after mild exercise. We show that nNOS- null mice do not have muscle pathology and have no loss of muscle- specific force after exercise but do display this exaggerated fatigue response to mild exercise. In mouse models of nNOS mislocalization from the sarcolemma, prolonged inactivity was only relieved by pharmacologically enhancing the cGMP signal that results from muscle nNOS activation during the nitric oxide signalling response to mild exercise. Our findings suggest that the mechanism underlying the exaggerated fatigue response to mild exercise is a lack of contraction- induced signalling from sarcolemma- localized nNOS, which decreases cGMP- mediated vasomodulation in the vessels that supply active muscle after mild exercise. Sarcolemmal nNOS staining was decreased in patient biopsies from a large number of distinct myopathies, suggesting a common mechanism of fatigue. Our results suggest that patients with an exaggerated fatigue response to mild exercise would show clinical improvement in response to treatment strategies aimed at improving exercise- induced signalling.Paul D. Wellstone Muscular Dystrophy Cooperative Research Center Grant ; University of Iowa Cardiovascular Interdisciplinary Research ; National Research Service Award ; National Institute of Arthritis and Musculoskeletal and Skin Diseases ; National Institutes of Health ; Senator Paul D. Wellstone Fellowship ; Muscular Dystrophy Association Development Grant ; Howard Hughes Medical InstituteWe thank M. Anderson and M. Henry for comments, and M. M. Kilburg, K. Uppal, B. J. Steinmann and S. Watkins and members of the Campbell laboratory for scientific contributions. This work was supported in part by a Paul D. Wellstone Muscular Dystrophy Cooperative Research Center Grant. Y.M.K. was supported by grants from the University of Iowa Cardiovascular Interdisciplinary Research/ National Research Service Award (NRSA) Fellowship, from an individual NRSA Fellowship from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, from the National Institutes of Health (NIH), and from a Senator Paul D. Wellstone Fellowship. E.P.R. was supported by a Muscular Dystrophy Association Development Grant. R.M.W. was supported by the NIH. K.P.C. is an investigator of the Howard Hughes Medical Institute.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62850/1/nature07414.pd

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: A COSMIC collaboration cohort study.

    Get PDF
    BACKGROUND: With no effective treatments for cognitive decline or dementia, improving the evidence base for modifiable risk factors is a research priority. This study investigated associations between risk factors and late-life cognitive decline on a global scale, including comparisons between ethno-regional groups. METHODS AND FINDINGS: We harmonized longitudinal data from 20 population-based cohorts from 15 countries over 5 continents, including 48,522 individuals (58.4% women) aged 54-105 (mean = 72.7) years and without dementia at baseline. Studies had 2-15 years of follow-up. The risk factors investigated were age, sex, education, alcohol consumption, anxiety, apolipoprotein E ε4 allele (APOE*4) status, atrial fibrillation, blood pressure and pulse pressure, body mass index, cardiovascular disease, depression, diabetes, self-rated health, high cholesterol, hypertension, peripheral vascular disease, physical activity, smoking, and history of stroke. Associations with risk factors were determined for a global cognitive composite outcome (memory, language, processing speed, and executive functioning tests) and Mini-Mental State Examination score. Individual participant data meta-analyses of multivariable linear mixed model results pooled across cohorts revealed that for at least 1 cognitive outcome, age (B = -0.1, SE = 0.01), APOE*4 carriage (B = -0.31, SE = 0.11), depression (B = -0.11, SE = 0.06), diabetes (B = -0.23, SE = 0.10), current smoking (B = -0.20, SE = 0.08), and history of stroke (B = -0.22, SE = 0.09) were independently associated with poorer cognitive performance (p < 0.05 for all), and higher levels of education (B = 0.12, SE = 0.02) and vigorous physical activity (B = 0.17, SE = 0.06) were associated with better performance (p < 0.01 for both). Age (B = -0.07, SE = 0.01), APOE*4 carriage (B = -0.41, SE = 0.18), and diabetes (B = -0.18, SE = 0.10) were independently associated with faster cognitive decline (p < 0.05 for all). Different effects between Asian people and white people included stronger associations for Asian people between ever smoking and poorer cognition (group by risk factor interaction: B = -0.24, SE = 0.12), and between diabetes and cognitive decline (B = -0.66, SE = 0.27; p < 0.05 for both). Limitations of our study include a loss or distortion of risk factor data with harmonization, and not investigating factors at midlife. CONCLUSIONS: These results suggest that education, smoking, physical activity, diabetes, and stroke are all modifiable factors associated with cognitive decline. If these factors are determined to be causal, controlling them could minimize worldwide levels of cognitive decline. However, any global prevention strategy may need to consider ethno-regional differences

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value &lt; 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p &lt; 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Unconscious bias in the suppressive policing of Black and Latino men and boys: neuroscience, Borderlands theory, and the policymaking quest for just policing

    Full text link
    his article applies neuroscience and Borderlands theory to reveal how unconscious bias currently stabilizes suppressive policing practices in America despite new efforts at reform. Illustrative cases are offered from Oakland and Santa Barbara, California, with a focus on civil gang injunctions (CGIs) and youth gang suppression. Theoretical analysis of these cases reveals how the unconscious biases of validity illusions and framing effects operate despite the best intentions of law enforcement personnel. Such unconscious or implicit biases create contradictions between the stated beliefs and actions of law enforcement. In turn, these unintended self-contradictions then work to the detriment of Latino and Black boys. The analysis here also extends to how unconscious biases and unintended self-contradictions can influence municipal policymaking in favor of suppressive police tactics such as CGIs, thereby displacing evidence-based policies that are proven to be far more effective. The article concludes with brief discussion of some of the means by which the unconscious biases – effects to which everyone is involuntarily prone – can be disrupted

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore