559 research outputs found

    Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye

    Get PDF
    KGaA, Weinheim.The optical properties of a series of strongly coupled microcavities containing the fluorescent molecular dye BODIPY-Br (bromine-substituted boron-dipyrromethene) dispersed into a transparent dielectric matrix are explored, with each cavity having a different exciton-photon detuning. Using temperature dependent emission, time-resolved spectroscopy, white-light reflectivity, and measurements of fluorescence quantum yield, the population of polaritons is explored along the lower polariton branch. It is found that both the cavity fluorescence quantum efficiency and the distribution of polariton states along the lower polariton branch is a function of exciton-photon detuning. Importantly, it is shown that in the most negatively detuned cavities, the emission quantum efficiency approaches that of a control (noncavity) film. A simple fitting model is developed, which is based upon direct radiative pumping of polariton states along the lower polariton branch and used it to obtain an excellent agreement with measured photoluminescence as a function of temperature and exciton-photon detuning, and qualitative agreement with the measured photoluminescence quantum efficiency. The radiative pumping mechanism indicates that to facilitate the formation of a nonequilibrium polariton condensate in strongly-coupled microcavities containing dispersed molecular dyes, it is important to utilize materials having high fluorescent quantum efficiency and fast radiative rates

    Triple point surface discharge photography in atmospheric gases using Intensified high-speed camera system

    Get PDF
    In this paper investigations of surface discharges using an ultraviolet (UV) intensified high-speed camera system are presented, accompanied with high frequency response and resolution current recordings. A needle-plane electrode configuration is employed for the generation of a strongly non-uniform electric field on the surface of disk-shaped insulator samples made of polytetrafluoroethylene (PTFE) or epoxy resin. The electrode arrangement is further insulated by a gaseous medium of either technical air (21% O2/79% N2), nitrogen (N2) or carbon dioxide (CO2). An alternating (AC) voltage waveform at power frequency (50Hz) is maintained at levels sufficiently below the flashover voltage corresponding to each presented case. Detailed descriptions of the technical specifications of the utilised equipment are provided for both optical and electrical measurements in the experimental set-up. The obtained results demonstrate the discharge propagation during the AC-cycle and its dependence on the insulator type and gaseous insulating medium. Individual surface discharges are captured in the microsecond range to describe the discharge morphology based on the generated current pulse and instantaneous applied voltage level. Back-discharges on the insulating disc are also discussed, and a relevant image capture is presente

    Extragalactic neutrino background from very young pulsars surrounded by supernova envelopes

    Full text link
    We estimate the extragalactic muon neutrino background which is produced by hadrons injected by very young pulsars at an early phase after supernova explosion. It is assumed that hadrons are accelerated in the pulsar wind zone which is filled with thermal photons captured below the expanding supernova envelope. In collisions with those thermal photons hadrons produce pions which decay into muon neutrinos. At a later time, muon neutrinos are also produced by the hadrons in collisions with matter of the expanding envelope. We show that extragalactic neutrino background predicted by such a model should be detectable by the planned 1 km2^2 neutrino detector if a significant part of pulsars is born with periods shorter than ∌10\sim 10 ms. Since such population of pulsars is postulated by the recent models of production of extremely high energy cosmic rays, detection of neutrinos with predicted fluxes can be used as their observational test.Comment: 4 pages, 2 figures, A&A style, accepted to A&A Let

    Intermolecular States in Organic Dye Dispersions: Excimers vs Aggregates

    Get PDF
    Rapid excited-state quenching in the solid state is a widespread limitation for organic chromophores. Even when molecules are dispersed in neutral host matrices, photoluminescence quantum yields decrease sharply with increased concentration, pointing to efficient intermolecular non-radiative decay pathways that remain poorly understood. Here we study the nature of the intermolecular states formed in dispersions of the prototypical BODIPY dyes. Using temperature-dependent and time-resolved photoluminescence measurements, we describe the processes of energy transfer into excimer states and, in materials with suitable chemical structure, excitonically coupled dimers. These dimer states exhibit remarkable near-unity quantum yield

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    TRNA genes affect chromosome structure and function via local effects

    Get PDF
    The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    1-O-Octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-GS-441524 (V2043). Evaluation of Oral V2043 in a Mouse Model of SARS-CoV-2 Infection and Synthesis and Antiviral Evaluation of Additional Phospholipid Esters with Enhanced Anti-SARS-CoV-2 Activity

    Get PDF
    Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections
    • 

    corecore