105 research outputs found

    Anatomy and Taxonomic Status of the Chasmosaurine Ceratopsid Nedoceratops hatcheri from the Upper Cretaceous Lance Formation of Wyoming, U.S.A

    Get PDF
    Background: The validity of Nedoceratops hatcheri, a chasmosaurine ceratopsid dinosaur known from a single skull recovered in the Lance Formation of eastern Wyoming, U.S.A., has been debated for over a century. Some have argued that the taxon is an aberrant Triceratops, and most recently it was proposed that N. hatcheri represents an intermediate ontogenetic stage between ‘‘young adult’ ’ and ‘‘old adult’ ’ forms of a single taxon previously split into Triceratops and Torosaurus. Methodology/Principal Findings: The holotype skull of Nedoceratops hatcheri was reexamined in order to map reconstructed areas and compare the specimen with other ceratopsids. Although squamosal fenestrae are almost certainly not of taxonomic significance, some other features are unique to N. hatcheri. These include a nasal lacking a recognizable horn, nearly vertical postorbital horncores, and relatively small parietal fenestrae. Thus, N. hatcheri is tentatively considered valid, and closely related to Triceratops spp. The holotype of N. hatcheri probably represents an ‘‘old adult,’ ’ based upon bone surface texture and the shape of the horns and epiossifications on the frill. In this study, Torosaurus is maintained as a genus distinct from Triceratops and Nedoceratops. Synonymy of the three genera as ontogenetic stages of a single taxon would require cranial changes otherwise unknown in ceratopsids, including additions of ossifications to the frill and repeated alternation of bone surface texture between juvenile and adult morphotypes

    Reconfigurable self-assembly through chiral control of interfacial tension

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 481 (2012): 348–351, doi:10.1038/nature10769.From determining optical properties of simple molecular crystals to establishing preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical, and optical properties of both synthetic and biological matter at macroscopic lengthscales1,2. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials3-6. An example of particular interest is smectic liquid crystals, where the 2D layered geometry cannot support twist, expelling chirality to the edges in a manner analogous to the expulsion of a magnetic field from superconductors7-10. Here, we demonstrate a previously unexplored consequence of this geometric frustration which leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes11, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This finding suggests an analogy between chiral twist which is expelled to the edge of 2D membranes, and amphiphilic surfactants which are expelled to oil-water interfaces12. Similar to surfactants, chiral control of interfacial tension drives the assembly of myriad polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ enables dynamical control of line tension that powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials which can easily be moved, stretched, attached to one another, and transformed between multiple conformational states, thus enabling precise assembly and nano-sculpting of highly dynamical and designable materials with complex topologies.This work was supported by the National Science Foundation (NSF-MRSEC-0820492, NSF-DMR-0955776, NSF-MRI 0923057) and Petroleum Research Fund (ACS-PRF 50558-DNI7).2012-07-0

    ‘Nedoceratops’: An Example of a Transitional Morphology

    Get PDF
    Background: The holotype and only specimen of the chasmosaurine ceratopsid dinosaur ‘Nedoceratops hatcheri ’ has been the source of considerable taxonomic debate since its initial description. At times it has been referred to its own genus while at others it has been considered synonymous with the contemporaneous chasmosaurine Triceratops. Most recently, the debate has focused on whether the specimen represents an intermediate ontogenetic stage between typical young adult Triceratops and the proposed mature morphology, which was previously considered to represent a distinct genus, ‘Torosaurus’. Methodology/Principal Findings: The only specimen of ‘Nedoceratops hatcheri ’ was examined and the proposed diagnostic features of this taxon were compared with other chasmosaurine ceratopsids. Every suggested autapomorphy of ‘Nedoceratops ’ is found in specimens of Triceratops. In this study, Triceratops includes the adult ‘Torosaurus ’ morphology. The small parietal fenestra and elongate squamosals of Nedoceratops are consistent with a transition from a short, solid parietalsquamosal frill to an expanded, fenestrated condition. Objections to this hypothesis regarding the number of epiossifications of the frill and alternations of bone surface texture were explored through a combination of comparative osteology and osteohistology. The synonymy of the three taxa was further supported by these investigations. Conclusions/Significance: The Triceratops, ‘Torosaurus’, and ‘Nedoceratops ’ morphologies represent ontogenetic variatio

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.

    Get PDF
    BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme

    Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

    Get PDF
    Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1–5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: P. falciparum and P. knowlesi. Furthermore, little is understood about the early events in establishment of chronic infection in these species. Using a rodent model we demonstrate that only a minority of parasites from among the infecting population, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasite and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintainance of chronic P. falciparum infections7–9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Since pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections

    α2-Macroglobulin can crosslink multiple plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) molecules and may facilitate adhesion of parasitized erythrocytes

    Get PDF
    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens

    Are food-deceptive orchid species really functionally specialized for pollinators?

    Get PDF
    Food-deceptive orchid species have traditionally been considered pollination specialized to bees or butterflies. However, it is unclear to which concept of specialization this assumption is related; if to that of phenotypic specialization or of functional specialization. The main aim of this work was to verify if pollinators of five widespread food-deceptive orchid species (Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase, Anacamptis pyramidalis (L.) Rich., Himantoglossum adriaticum H. Baumann, Orchis purpurea Huds. and Orchis simia Lam.) predicted from the phenotypic point of view matched with the observed ones. We addressed the question by defining target orchids phenotypic specialization on the basis of their floral traits, and we compared the expected guilds of pollinators with the observed ones. Target orchid pollinators were collected by conducting a meta-analysis of the available literature and adding unpublished field observations, carried out in temperate dry grasslands in NE Italy. Pollinator species were subsequently grouped into guilds and differences in the guild spectra among orchid species grouped according to their phenotype were tested. In contradiction to expectations derived from the phenotypic point of view, food-deceptive orchid species were found to be highly functionally generalized for pollinators, and no differences in the pollinator guild spectra could be revealed among orchid groups. Our results may lead to reconsider food-deceptive orchid pollination ecology by revaluating the traditional equation orchid-pollination specialization

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling
    corecore