104 research outputs found

    A glucosylceramide synthase inhibitor prevents the cytotoxic effects of Shiga toxin-2 on human renal tubular epithelial cells

    Get PDF
    Shiga toxin-2 binds to the globotriaosyl-ceramide receptor on the plasma membrane of target cells. The highlevel expression of this receptor in renal epithelial cells may account, at least in part, for acute renal failure observed inchildren with hemolytic uremic syndrome. The cytotoxic effect of Shiga toxin-2 was assayed on primary cultures of humanrenal tubular epithelial cells treated with a new specific inhibitor of glucosylceramide synthase (C-9), the ratelimitingfirst step in the glycosphingolipid biosynthetic pathway. The treatment of the cells with 1-5 M C-9 for at least24 h significantly neutralized the action of 1 ng/ml Shiga toxin-2 on cell viability. The expression levels of globotriaosylceramidesignificantly decreased when cells were incubated with 1 M C-9 for 48 h. We propose here that prevention ofglobotriaosyl-ceramide synthesis by the C-9 could be a novel substrate inhibition therapy to neutralize Shiga toxin-2 actionin renal epithelial cells.Fil: Silberstein, Claudia Marcela. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias FisiolĂłgicas. Laboratorio de Fisiopatogenia; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay; ArgentinaFil: Copeland, Diane P. No especifĂ­ca;Fil: Chiang, Wei Lien. No especifĂ­ca;Fil: Repetto, Horacio A.. Hospital Nacional Profesor Alejandro Posadas; ArgentinaFil: Ibarra, Cristina Adriana. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias FisiolĂłgicas. Laboratorio de Fisiopatogenia; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay; Argentin

    Spatiotemporal analysis of air pollution and asthma patient visits in Taipei, Taiwan

    Get PDF
    [[abstract]]Background: Buffer analyses have shown that air pollution is associated with an increased incidence of asthma, but little is known about how air pollutants affect health outside a defined buffer. The aim of this study was to better understand how air pollutants affect asthma patient visits in a metropolitan area. The study used an integrated spatial and temporal approach that included the Kriging method and the Generalized Additive Model (GAM). Results: We analyzed daily outpatient and emergency visit data from the Taiwan Bureau of National Health Insurance and air pollution data from the Taiwan Environmental Protection Administration during 2000-2002. In general, children (aged 0-15 years) had the highest number of total asthma visits. Seasonal changes of PM10, NO2, O3 and SO2 were evident. However, SO2 showed a positive correlation with the dew point (r = 0.17, p < 0.01) and temperature (r = 0.22, p < 0.01). Among the four pollutants studied, the elevation of NO2 concentration had the highest impact on asthma outpatient visits on the day that a 10% increase of concentration caused the asthma outpatient visit rate to increase by 0.30% (95% CI: 0.16%??.45%) in the four pollutant model. For emergency visits, the elevation of PM10 concentration, which occurred two days before the visits, had the most significant influence on this type of patient visit with an increase of 0.14% (95% CI: 0.01%??.28%) in the four pollutants model. The impact on the emergency visit rate was non-significant two days following exposure to the other three air pollutants. Conclusion: This preliminary study demonstrates the feasibility of an integrated spatial and temporal approach to assess the impact of air pollution on asthma patient visits. The results of this study provide a better understanding of the correlation of air pollution with asthma patient visits and demonstrate that NO2 and PM10 might have a positive impact on outpatient and emergency settings respectively. Future research is required to validate robust spatiotemporal patterns and trends

    Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM)

    Full text link
    Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS), which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present), 2015 - 2039 (Near-future), and 2075 - 2099 (Future), provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Ten extreme rainfall (top ten) events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present) and 0.9 - 2.2 (Future/Present), respectively. Additionally, we evaluated how these future discharges would affect the reservoir¥Šs flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¥Šs spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¥Šs flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario

    AMiBA Wideband Analog Correlator

    Get PDF
    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.Comment: 28 pages, 23 figures, ApJ in press

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd

    Clinical characteristics and risk behavior as a function of HIV status among heroin users enrolled in methadone treatment in northern Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methadone treatment was introduced in Taiwan in 2006 as a harm-reduction program in response to the human immunodeficiency virus (HIV), which is endemic among Taiwanese heroin users. The present study was aimed at examining the clinical and behavioral characteristics of methadone patients in northern Taiwan according to their HIV status.</p> <p>Methods</p> <p>The study was conducted at four methadone clinics. Participants were patients who had undergone methadone treatment at the clinics and who voluntarily signed a consent form. Between August and November 2008, each participant completed a face-to-face interview that included questions on demographics, risk behavior, quality of life, and psychiatric symptoms. Data on HIV and hepatitis C virus (HCV) infections, methadone dosage, and morphine in the urine were retrieved from patient files on the clinical premises, with permission of the participants.</p> <p>Results</p> <p>Of 576 participants, 71 were HIV positive, and 514 had hepatitis C. There were significant differences between the HIV-positive and HIV-negative groups on source of treatment payment, HCV infection, urine test results, methadone dosage, and treatment duration. The results indicate that HIV-negative heroin users were more likely to have sexual intercourse and not use condoms during the 6 months prior to the study. A substantial percent of the sample reported anxiety (21.0%), depression (27.2%), memory loss (32.7%), attempted suicide (32.7%), and administration of psychiatric medications (16.1%). There were no significant differences between the HIV-positive and HIV-negative patients on psychiatric symptoms or quality of life.</p> <p>Conclusions</p> <p>HIV-positive IDUs were comorbid with HCV, indicating the need to refer both HIV- and HCV-infected individuals for treatment in methadone clinics. Currently, there is a gap between psychiatric/psychosocial services and patient symptoms, and more integrated medical services should be provided to heroin-using populations.</p

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p

    Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes

    No full text
    In this paper, multiscale composites formed by grafting N-doped carbon nanotubes (CNs) on the surface of polyamide (PAN)-based activated carbon fibers (ACFs) were investigated and their adsorption performance for CO2 was determined. The spaghetti-like and randomly oriented CNs were homogeneously grown onto ACFs. The pre-immersion of cobalt(II) ions for ACFs made the CNs grow above with a large pore size distribution, decreased the oxidation resistance, and exhibited different predominant N-functionalities after chemical vapor deposition processes. Specifically, the CNs grafted on ACFs with or without pre-immersion of cobalt(II) ions were characterized by the pyridine-like structures of six-member rings or pyrrolic/amine moieties, respectively. In addition, the loss of microporosity on the specific surface area and pore volume exceeded the gain from the generation of the defects from CNs. The adsorption capacity of CO2 decreased gradually with increasing temperature, implying that CO2 adsorption was exothermic. The adsorption capacities of CO2 at 25 °C and 1 atm were between 1.53 and 1.92 mmol/g and the Freundlich equation fit the adsorption data well. The isosteric enthalpy of adsorption, implying physical adsorption, indicated that the growth of CNTs on the ACFs benefit CO2 adsorption
    • 

    corecore