167 research outputs found

    Habitat associations of the sagebrush lizard (Sceloporus graciosus): Potential responses of an ectotherm to ponderosa pine forest restoration treatments

    Get PDF
    Little is known about the response of ectotherms to ponderosa pine (Pinus ponderosa) restoration treatments. The ambient body temperature of an ectotherm affects its physiology, development, and behavior. Microhabitat availability and heterogeneity are critical factors in determining which thermoregulation choices are available to a terrestrial ectotherm (Stevenson 1985). Forest restoration treatments (for example, thinning and burning) will alter herpetofauna microhabitats by decreasing tree canopy cover and allowing more sunlight penetration to the forest floor. This change could, depending on the species, have positive or negative effects on the populations of the area. We sampled microhabitat use by Sceloporus graciosus (sagebrush lizards) in northern Arizona at Grand Canyon-Parashant National Monument using standard pitfall-array sampling methodology. Univariate analyses were used to relate lizard abundance to ponderosa pine tree density, percent soil cover, percent rock cover, litter depth, and insect density. In a multivariate analysis, ponderosa pine density (negatively correlated) and bare soil cover (positively correlated) were the best predictors of lizard abundance. Restoration treatments will increase small-scale heterogeneity within S. graciosus territories by increasing accessibility into and out of sunlight. Based on the thermoregulatory demands of this species, these changes should benefit S. graciosus. However, other possible indirect effects of restoration treatments such as increases in predation on lizards (due to greater visibility), as well as changes in food availability, could negatively impact lizard populations. Future research should focus on pre- and postrestoration treatment monitoring of herpetofauna, and on the direct effects of fire on herpetofauna populations within restoration sites

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    Nanosized superparamagnetic precipitates in cobalt-doped ZnO

    Full text link
    The existence of semiconductors exhibiting long-range ferromagnetic ordering at room temperature still is controversial. One particularly important issue is the presence of secondary magnetic phases such as clusters, segregations, etc... These are often tedious to detect, leading to contradictory interpretations. We show that in our cobalt doped ZnO films grown homoepitaxially on single crystalline ZnO substrates the magnetism unambiguously stems from metallic cobalt nano-inclusions. The magnetic behavior was investigated by SQUID magnetometry, x-ray magnetic circular dichroism, and AC susceptibility measurements. The results were correlated to a detailed microstructural analysis based on high resolution x-ray diffraction, transmission electron microscopy, and electron-spectroscopic imaging. No evidence for carrier mediated ferromagnetic exchange between diluted cobalt moments was found. In contrast, the combined data provide clear evidence that the observed room temperature ferromagnetic-like behavior originates from nanometer sized superparamagnetic metallic cobalt precipitates.Comment: 20 pages, 6 figures; details about background subtraction added to section III. (XMCD

    Ocean forests: breakthrough yields for macroalgae

    Get PDF
    The US Department of Energy Advanced Research Projects Agency - Energy (ARPA-E) MacroAlgae Research Inspiring Novel Energy Research (MARINER) program is encouraging technologies for the sustainable harvest of large funding research of macroalgae for biofuels at less than $80 per dry metric ton (DMT). The Ocean Forests team, led by the University of Southern Mississippi, is developing a complete managed ecosystem where nutrients are transformed and recycled. The team’s designs address major bottlenecks in profitability of offshore aquaculture systems including economical moored structures that can withstand storms, efficient planting, managing and harvesting systems, and sustainable nutrient supply. The work is inspired by Lapointe who reported yields of Gracilaria tikvahiae equivalent to 127 DMT per hectare per year (compared with standard aquaculture systems in the range of 20 to 40 DMT/ha/yr). This approach offers the potential for breakthrough yields for many macroalgae species. Moreover, mini-ecosystems in offshore waters create communities of macroalgae, shellfish, and penned finfish, supplemented by visiting free-range fish that can increase productivity, produce quality products, and create jobs and income for aquafarmers. Additional benefits include reduced disease in fish pens, cleaning contaminated coastal waters, and maximizing nutrient recycling. Cost projections for a successful, intensive, scaled system are competitive with current prices for fossil fuels

    Mucormycosis in Australia: Contemporary epidemiology and outcomes

    Get PDF
    Mucormycosis is the second most common cause of invasive mould infection and causes disease in diverse hosts, including those who are immuno-competent. We conducted a multicentre retrospective study of proven and probable cases of mucormycosis diagnosed between 2004–2012 to determine the epidemiology and outcome determinants in Australia. Seventy-four cases were identified (63 proven, 11 probable). The majority (54.1%) were caused by Rhizopus spp. Patients who sustained trauma were more likely to have non-Rhizopus infections relative to patients without trauma (OR 9.0, p 0.001, 95% CI 2.1–42.8). Haematological malignancy (48.6%), chemotherapy (42.9%), corticosteroids (52.7%), diabetes mellitus (27%) and trauma (22.9%) were the most common co-morbidities or risk factors. Rheumatological/autoimmune disorders occurred in nine (12.1%) instances. Eight (10.8%) cases had no underlying co-morbidity and were more likely to have associated trauma (7/8; 87.5% versus 10/66; 15.2%; p <0.001). Disseminated infection was common (39.2%). Apophysomyces spp. and Saksenaea spp. caused infection in immuno-competent hosts, most frequently associated with trauma and affected sites other than lung and sinuses. The 180-day mortality was 56.7%. The strongest predictors of mortality were rheumatological/autoimmune disorder (OR = 24.0, p 0.038 95% CI 1.2–481.4), haematological malignancy (OR = 7.7, p 0.001, 95% CI 2.3–25.2) and admission to intensive care unit (OR = 4.2, p 0.02, 95% CI 1.3–13.8). Most deaths occurred within one month. Thereafter we observed divergence in survival between the haematological and non-haematological populations (p 0.006). The mortality of mucormycosis remains particularly high in the immuno-compromised host. Underlying rheumatological/autoimmune disorders are a previously under-appreciated risk for infection and poor outcome

    Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow–induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.Kendelle J. Murphy ... Michael S. Samuel ... et al. [Australian Pancreatic Genome Initiative (APGI), Australian Pancreatic Cancer Matrix Atlas (APMA)

    Emerging tumor spheroids technologies for 3D in vitro cancer modeling

    Get PDF
    "Article in Press, Available online 31 October 2017" ; "S0163-7258(17)30268-1"Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and promts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidiating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactons involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targated therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of tranlationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.The authors are thankful to European Union (Horizon 2020) funded project FoReCaST (No. 668983), the FCT fellowship to J. Silva-Correia (Grant No. SFRH/BPD/100590/2014), distinctions to J.M.O. under the Investigator FCT program (IF/00423/2012) and V.M.C. under the Investigator FCT program (IF/01214/2014) for supporting this work financially.info:eu-repo/semantics/publishedVersio

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    Associations of autozygosity with a broad range of human phenotypes

    Get PDF
    In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (F-ROH) for >1.4 million individuals, we show that F-ROH is significantly associated (p <0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: F-ROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44-66%] in the odds of having children. Finally, the effects of F-ROH are confirmed within full-sibling pairs, where the variation in F-ROH is independent of all environmental confounding.Peer reviewe
    corecore