270 research outputs found

    Tumor cell migration in complex microenvironments

    Get PDF
    Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable.National Science Foundation (U.S.) (Graduate Research Fellowship)Charles Stark Draper Laboratory (Research and Development Program (N.DL-H-550151))National Cancer Institute (U.S.) (R21CA140096

    Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels

    Get PDF
    This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of <1 mm, thereby replicating many aspects of the in vivo microenvironment. Capabilities exist for time-dependent manipulation of flow and concentration gradients as well as high-resolution real-time imaging for observing spatial-temporal single-cell behavior, cell-cell communication, cell-matrix interactions and cell population dynamics. These heterotypic cell type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.National Research Foundation of Korea (grant no. 2010-0023975)Japan Society for the Promotion of Science (G2212)Japan. Science and Technology Agency (22680037)National Science Foundation (U.S.) (CBET-0939511

    Engineering the tumor microenvironment using microfluidics : effects of cell-cell interactions and endothelial barrier function on tumor cell intravasation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 87-97).90% of cancer related deaths are due to metastatic disease and there is a need for a better understanding of cell-microenvironment interactions to identify new therapeutic targets. A key step during cancer metastasis is cancer cell intravasation (entry of cancer cells into the blood vessels) that results in tumor cell dissemination into distant organs. During this process, tumor cells navigate a complex microenvironment and interact with multiple cell types. This thesis is aimed to develop a microfluidic-based intravasation assay that allows for direct observation of tumor cell motility combined with quantitation of the endothelial barrier function. Compared with traditional in vitro assays, microfluidic assays enable "user-defined" design of the cellular and acellular microenvironment with spatio-temporal control and live high-resolution imaging. Formation of confluent endothelial layers in the device was confirmed with immunofluorescence staining for endothelial cell-cell junctions and we compared our diffusive permeability values with published in vivo and in vitro data. We employ this microfluidic assay to investigate the role of endothelial barrier function during tumor cell intravasation to address a critical question in cancer research: does tumor cell intravasation require a leaky endothelium? To induce vessel leakiness we perturb the barrier using biochemical factors, endothelial cells with low expression of basement membrane proteins and signaling with macrophages. Under all these conditions, tumor cell intravasation rates increased and we confirmed these results for multiple tumor cell types. Characterization of macrophage secreted factors and M1/M2 polarization status, identified that blocking macrophage-secreted TNF-a restored endothelial permeability and reduced tumor cell intravasation. In agreement with these results, we also found that the number and dynamics of tumor-endothelial interactions were dependent on endothelial barrier function. A novel feature of the developed assay is the ability to image in real-time the process of tumor cell intravasation, while also enabling accurate control and quantitation of the functional characteristics of the endothelial barrier. Our results not only demonstrate the important role of cell-cell paracrine signaling and biochemical factors in regulating tumor cell intravasation, but also have important implications for strategies aimed to disrupt or normalize vasculature in vivo. Keywords: 3D Microfluidics, Endothelial permeability, Cancer cell Intravasation, Macrophages.by loannis K. Zervantonakis.Ph.D

    In Vitro Model of Tumor Cell Extravasation

    Get PDF
    Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium

    A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment

    Get PDF
    Low oxygen tensions experienced in various pathological and physiological conditions are a major stimulus for angiogenesis. Hypoxic conditions play a critical role in regulating cellular behaviour including migration, proliferation and differentiation. This study introduces the use of a microfluidic device that allows for the control of oxygen tension for the study of different three-dimensional (3D) cell cultures for various applications. The device has a central 3D gel region acting as an external cellular matrix, flanked by media channels. On each side, there is a peripheral gas channel through which suitable gas mixtures are supplied to establish a uniform oxygen tension or gradient within the device. The effects of various parameters, such as gas and media flow rates, device thickness, and diffusion coefficients of oxygen were examined using numerical simulations to determine the characteristics of the microfluidic device. A polycarbonate (PC) film with a low oxygen diffusion coefficient was embedded in the device in proximity above the channels to prevent oxygen diffusion from the incubator environment into the polydimethylsiloxane (PDMS) device. The oxygen tension in the device was then validated experimentally using a ruthenium-coated (Ru-coated) oxygen-sensing glass cover slip which confirmed the establishment of low uniform oxygen tensions (<3%) or an oxygen gradient across the gel region. To demonstrate the utility of the microfluidic device for cellular experiments under hypoxic conditions, migratory studies of MDA-MB-231 human breast cancer cells were performed. The microfluidic device allowed for imaging cellular migration with high-resolution, exhibiting an enhanced migration in hypoxia in comparison to normoxia. This microfluidic device presents itself as a promising platform for the investigation of cellular behaviour in a 3D gel scaffold under varying hypoxic conditions

    Engineering of In Vitro 3D Capillary Beds by Self-Directed Angiogenic Sprouting

    Get PDF
    In recent years, microfluidic systems have been used to study fundamental aspects of angiogenesis through the patterning of single-layered, linear or geometric vascular channels. In vivo, however, capillaries exist in complex, three-dimensional (3D) networks, and angiogenic sprouting occurs with a degree of unpredictability in all x,y,z planes. The ability to generate capillary beds in vitro that can support thick, biological tissues remains a key challenge to the regeneration of vital organs. Here, we report the engineering of 3D capillary beds in an in vitro microfluidic platform that is comprised of a biocompatible collagen I gel supported by a mechanical framework of alginate beads. The engineered vessels have patent lumens, form robust ~1.5 mm capillary networks across the devices, and support the perfusion of 1 µm fluorescent beads through them. In addition, the alginate beads offer a modular method to encapsulate and co-culture cells that either promote angiogenesis or require perfusion for cell viability in engineered tissue constructs. This laboratory-constructed vascular supply may be clinically significant for the engineering of capillary beds and higher order biological tissues in a scalable and modular manner.Singapore-MIT Alliance for Research and Technolog

    A high-throughput microfluidic assay to study neurite response to growth factor gradients

    Get PDF
    Studying neurite guidance by diffusible or substrate bound gradients is challenging with current techniques. In this study, we present the design, fabrication and utility of a microfluidic device to study neurite guidance under chemogradients. Experimental and computational studies demonstrated the establishment of a steep gradient of guidance cue within 30 min and stable for up to 48 h. The gradient was found to be insensitive to external perturbations such as media change and movement of device. The effects of netrin-1 (0.1–10 µg mL−1) and brain pulp (0.1 µL mL−1) were evaluated for their chemoattractive potential on neurite turning, while slit-2 (62.5 or 250 ng mL−1) was studied for its chemorepellant properties. Hippocampal or dorsal root ganglion (DRG) neurons were seeded into a micro-channel and packed onto the surface of a 3D collagen gel. Neurites grew into the matrix in three dimensions, and a gradient of guidance cue was created orthogonal to the direction of neurite growth to impact guidance. The average turning angle of each neurite was measured and averaged across multiple devices cultured under similar conditions to quantify the effect of guidance cue gradient. Significant positive turning towards gradient was measured in the presence of brain pulp and netrin-1 (1 µg mL−1), relative to control cultures which received no external guidance cue (p < 0.001). Netrin-1 released from transfected fibroblasts had the most positive turning effect of all the chemoattractive cues tested (p < 0.001). Slit-2 exhibited strong chemorepellant characteristics on both hippocampal and DRG neurite guidance at 250 ng mL−1 concentration. Slit-2 also showed similar behavior on DRG neuron invasion into 3D collagen gel (p < 0.01 relative to control cultures). Taken together, the results suggest the utility of this microfluidic device to generate stable chemogradients for studying neurobiology, cell migration and proliferation, matrix remodeling and co-cultures with other cell lines, with potential applications in cancer biology, tissue engineering and regenerative medicine.Seoul R&BD Support Center (program PA090930

    Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures

    Get PDF
    We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme enabling high-throughput, unbiased quantification of angiogenic growth. Because of the increased throughput of the assay in comparison to existing three-dimensional morphogenic assays, statistical properties of angiogenic growth can be reliably estimated. We used the assay to evaluate the combined effects of vascular endothelial growth factor (VEGF) and the signaling lipid sphingoshine-1-phosphate (S1P). Our results show the importance of S1P in amplifying the angiogenic response in the presence of VEGF gradients. Furthermore, the application of S1P with VEGF gradients resulted in angiogenic sprouts with higher aspect ratio than S1P with background levels of VEGF, despite reduced total migratory activity. This implies a synergistic effect between the growth factors in promoting angiogenic activity. Finally, the variance in the computed angiogenic metrics (as measured by ensemble standard deviation) was found to increase linearly with the ensemble mean. This finding is consistent with stochastic agent-based mathematical models of angiogenesis that represent angiogenic growth as a series of independent stochastic cell-level decisions.National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (grant #0735997

    Screening therapeutic EMT blocking agents in a three-dimensional microenvironment

    Get PDF
    Epithelial–mesenchymal transition (EMT) plays a critical role in the early stages of dissemination of carcinoma leading to metastatic tumors, which are responsible for over 90% of all cancer-related deaths. Current therapeutic regimens, however, have been ineffective in the cure of metastatic cancer, thus an urgent need exists to revisit existing protocols and to improve the efficacy of newly developed therapeutics. Strategies based on preventing EMT could potentially contribute to improving the outcome of advanced stage cancers. To achieve this goal new assays are needed to identify targeted drugs capable of interfering with EMT or to revert the mesenchymal-like phenotype of carcinoma to an epithelial-like state. Current assays are limited to examining the dispersion of carcinoma cells in isolation in conventional 2-dimensional (2D) microwell systems, an approach that fails to account for the 3-dimensional (3D) environment of the tumor or the essential interactions that occur with other nearby cell types in the tumor microenvironment. Here we present a microfluidic system that integrates tumor cell spheroids in a 3D hydrogel scaffold, in close co-culture with an endothelial monolayer. Drug candidates inhibiting receptor activation or signal transduction pathways implicated in EMT have been tested using dispersion of A549 lung adenocarcinoma cell spheroids as a metric of effectiveness. We demonstrate significant differences in response to drugs between 2D and 3D, and between monoculture and co-culture.Singapore. National Research Foundation (Singapore MIT Alliance for Research and Technology's BioSystems and Micromechanics Inter-Disciplinary Research programme)National University of Singapore (Cancer Science Institute)Singapore. Agency for Science, Technology and ResearchSingapore. Institute of Molecular and Cell Biology (IMCB core funding A*STAR
    corecore