447 research outputs found

    Quantum Repeaters based on Single Trapped Ions

    Get PDF
    We analyze the performance of a quantum repeater protocol based on single trapped ions. At each node, single trapped ions embedded into high finesse cavities emit single photons whose polarization is entangled with the ion state. A specific detection of two photons at a central station located half-way between two nodes heralds the entanglement of two remote ions. Entanglement can be extended to long distances by applying successive entanglement swapping operations based on two-ion gate operations that have already been demonstrated experimentally with high precision. Our calculation shows that the distribution rate of entanglement achievable with such an ion-based quantum repeater protocol is higher by orders of magnitude than the rates that are achievable with the best known schemes based on atomic ensemble memories and linear optics. The main reason is that for trapped ions the entanglement swapping operations are performed deterministically, in contrast to success probabilities below 50 percent per swapping with linear optics. The scheme requires efficient collection of the emitted photons, which can be achieved with cavities, and efficient conversion of their wavelength, which can be done via stimulated parametric down-conversion. We also suggest how to realize temporal multiplexing, which offers additional significant speed-ups in entanglement distribution, with trapped ions

    Electric field noise above surfaces: a model for heating rate scaling law in ion traps

    Get PDF
    We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, dd, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, ζ\zeta, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of dd. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering

    Breakdown of scale invariance in a quasi-two-dimensional Bose gas due to the presence of the third dimension

    Full text link
    In this Rapid Communication, we describe how the presence of the third dimension may break the scale invariance in a two-dimensional Bose gas in a pancake-shaped trap. From the two-dimensional perspective, the possibility of a weak spilling of the atomic density beyond the ground-state of the confinement alters the two-dimensional chemical potential; in turn, this correction no longer supports scale invariance. We compare experimental data with numerical and analytic perturbative results and find a good agreement.Comment: 4 pages, 1 figure, published in PRA Rapid Com

    Imaging the collective excitations of an ultracold gas using statistical correlations

    Full text link
    Advanced data analysis techniques have proved to be crucial for extracting information from noisy images. Here we show that principal component analysis can be successfully applied to ultracold gases to unveil their collective excitations. By analyzing the correlations in a series of images we are able to identify the collective modes which are excited, determine their population, image their eigenfunction, and measure their frequency. Our method allows to discriminate the relevant modes from other noise components and is robust with respect to the data sampling procedure. It can be extended to other dynamical systems including cavity polariton quantum gases or trapped ions.Comment: See also the supplementary material and the video abstrac

    Large 2D Coulomb crystals in a radio frequency surface ion trap

    Full text link
    We designed and operated a surface ion trap, with an ion-substrate distance of 500\mum, realized with standard printed-circuit-board techniques. The trap has been loaded with up to a few thousand Sr+ ions in the Coulomb-crystal regime. An analytical model of the pseudo-potential allowed us to determine the parameters that drive the trap into anisotropic regimes in which we obtain large (N>150) purely 2D ion Coulomb crystals. These crystals may open a simple and reliable way to experiments on quantum simulations of large 2D systems.Comment: 4 pages, 4 figure

    Critical Rotation of an Annular Superfluid Bose Gas

    Full text link
    We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring trap. We identify two important branches of the spectrum related to outer and inner edge surface modes that lead to the instability of the superfluid. Depending on the initial circulation of the annular condensate, either the outer or the inner modes become first unstable. This instability is crucially related to the superfluid nature of the rotating gas. In particular we point out the existence of a maximal circulation above which the superflow decays spontaneously, which cannot be explained by invoking the average speed of sound.Comment: 5 pages, 5 figures, PRA Rapid Com

    Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal

    Get PDF
    We measured by laser spectroscopy the isotope shifts between naturally-occurring even-isotopes of strontium ions for both the 5s\,\,^2S_{1/2}\to 5p\,\,^2P_{1/2} (violet) and the 4d\,\,^2D_{3/2}\to 5p\,\,^2P_{1/2} (infrared) dipole-allowed optical transitions. Fluorescence spectra were taken by simultaneous measurements on a two-component Coulomb crystal in a linear Paul trap containing 10310^3--10410^4 laser-cooled Sr+^+ ions. The isotope shifts are extracted from the experimental spectra by fitting the data with the analytical solution of the optical Bloch equations describing a three-level atom in interaction with two laser beams. This technique allowed us to increase the precision with respect to previously reported data obtained by optogalvanic spectroscopy or fast atomic-beam techniques. The results for the 5s\,\,^2S_{1/2}\to 5p\,\,^2P_{1/2} transition are ν88−ν84=+378(4)\nu_{88}-\nu_{84}=+378(4) MHz and ν88−ν86=+170(3)\nu_{88}-\nu_{86}=+170(3) MHz, in agreement with previously reported measurements. In the case of the previously unexplored 4d\,\,^2D_{3/2}\to 5p\,\,^2P_{1/2} transition we find ν88−ν84=−828(4)\nu_{88}-\nu_{84}=-828(4) MHz and ν88−ν86=−402(2)\nu_{88}-\nu_{86}=-402(2) MHz. These results provide more data for stringent tests of theoretical calculations of the isotope shifts of alkali-metal-like atoms. Moreover, they simplify the identification and the addressing of Sr+^+ isotopes for ion frequency standards or quantum-information-processing applications in the case of multi-isotope ion strings.Comment: 19 pages; 5 figures; accepted on Phys. Rev. A (http://pra.aps.org/

    Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics

    Full text link
    We report direct evidence of superfluidity in a quasi two-dimensional Bose gas by observing its dynamical response to a collective excitation. Relying on a novel local correlation analysis, we are able to probe inhomogeneous clouds and reveal their local dynamics. We identify in this way the superfluid and thermal phases inside the gas and locate the boundary at which the Berezinskii--Kosterlitz--Thouless crossover occurs. This new analysis also allows to evidence the coupling of the two fluids which induces at finite temperatures damping rates larger than the usual Landau damping

    Double-lambda microscopic model for entangled light generation by four-wave-mixing

    Get PDF
    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR
    • …
    corecore