262 research outputs found

    A robust system for RNA interference in the chicken using a modified microRNA operon

    Get PDF
    AbstractRNA interference (RNAi) provides an effective method to silence gene expression and investigate gene function. However, RNAi tools for the chicken embryo have largely been adapted from vectors designed for mammalian cells. Here we present plasmid and retroviral RNAi vectors specifically designed for optimal gene silencing in chicken cells. The vectors use a chicken U6 promoter to express RNAs modelled on microRNA30, which are embedded within chicken microRNA operon sequences to ensure optimal Drosha and Dicer processing of transcripts. The chicken U6 promoter works significantly better than promoters of mammalian origin and in combination with a microRNA operon expression cassette (MOEC), achieves up to 90% silencing of target genes. By using a MOEC, we show that it is also possible to simultaneously silence two genes with a single vector. The vectors express either RFP or GFP markers, allowing simple in vivo tracking of vector delivery. Using these plasmids, we demonstrate effective silencing of Pax3, Pax6, Nkx2.1, Nkx2.2, Notch1 and Shh in discrete regions of the chicken embryonic nervous system. The efficiency and ease of use of this RNAi system paves the way for large-scale genetic screens in the chicken embryo

    Circular Single-Stranded Synthetic DNA Delivery Vectors for MicroRNA

    Get PDF
    Single-stranded (ss) circular oligodeoxynucleotides were previously found to undergo rolling circle transcription (RCT) by phage and bacterial RNA polymerases (RNAPs) into tandemly repetitive RNA multimers. Here, we redesign them to encode minimal primary miRNA mimics, with the long term aim of intracellular transcription followed by RNA processing and maturation via endogenous pathways. We describe an improved method for circularizing ss synthetic DNA for RCT by using a recently described thermostable RNA ligase, which does not require a splint oligonucleotide to juxtapose the ligating ends. In vitro transcription of four templates demonstrates that the secondary structure inherent in miRNA-encoding vectors does not impair their RCT by RNAPs previously shown to carry out RCT. A typical primary-miRNA rolling circle transcript was accurately processed by a human Drosha immunoprecipitate, indicating that if human RNAPs prove to be capable of RCT, the resulting transcripts should enter the endogenous miRNA processing pathway in human cells. Circular oligonucleotides are therefore candidate vectors for small RNA delivery in human cells, which express RNAPs related to those tested here

    Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection

    Get PDF
    Short interfering RNAs (siRNAs) are valuable reagents for sequence-specific inhibition of gene expression via the RNA interference (RNAi) pathway. Although it has been proposed that the relative thermodynamic stability at the 5′-ends of siRNAs plays a crucial role in siRNA strand selection, we demonstrate here that a character of the 2-nt 3′-overhang of siRNAs is the predominant determinant of which strand participates in the RNAi pathway. We show that siRNAs with a unilateral 2-nt 3′-overhang on the antisense strand are more effective than siRNAs with 3′-overhangs at both ends, due to preferential loading of the antisense strand into the RNA-induced silencing complex (RISC). Regardless of the relative thermodynamic stabilities at the ends of siRNAs, overhang-containing strands are predominantly selected as the guide strand; whereas, relative stability markedly influences opposite strand selection. Moreover, we show that sense strand modifications, such as deletions or DNA substitutions, of siRNAs with unilateral overhang on the antisense strand have no negative effect on the antisense strand selection, but may improve RNAi potency. Our findings provide useful guidelines for the design of potent siRNAs and contribute to understanding the crucial factors in determining strand selection in mammalian cells

    A Random shRNA-Encoding Library for Phenotypic Selection and Hit-Optimization

    Get PDF
    RNA interference (RNAi) is a mechanism for inhibiting gene expression through the action of small, non-coding RNAs. Most existing RNAi libraries target single genes through canonical pathways. Endogenous microRNAs (miRNAs), however, often target multiple genes and can act through non-canonical pathways, including pathways that activate gene expression. To interrogate all possible functions, we designed, synthesized, and validated the first shRNA-encoding library that is completely random at the nucleotide level. Screening in an IL3-dependent cell line, FL5.12, yielded shRNA-encoding sequences that double cell survival upon IL3 withdrawal. Using random mutagenesis and re-screening under more stringent IL3-starvation conditions, we hit-optimized one of the sequences; a specific nucleotide change and the creation of a mismatch between the two halves of the stem both contributed to the improved potency. Our library allows unbiased selection and optimization of shRNA-encoding sequences that confer phenotypes of interest, and could be used for the development of therapeutics and tools in many fields of biology

    Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors

    Get PDF
    Several different approaches exist to generate expressed RNA interference (RNAi) precursors for multiple target inhibition, a strategy referred to as combinatorial (co)RNAi. One such approach makes use of RNA Pol III-expressed long hairpin RNAs (lhRNAs), which are processed by Dicer to generate multiple unique short interfering siRNA effectors. However, because of inefficient intracellular Dicer processing, lhRNA duplexes have been limited to generating two independent effective siRNA species. In this study, we describe a novel strategy whereby four separate anti-HIV siRNAs were generated from a single RNA Pol III-expressed transcript. Two optimized lhRNAs, each comprising two active anti-HIV siRNAs, were placed in tandem to form a double long hairpin (dlhRNA) expression cassette, which encodes four unique and effective siRNA sequences. Processing of the 3′ position lhRNA was more variable but effective multiple processing was possible by manipulating the order of the siRNA-encoding sequences. Importantly, unlike shRNAs, Pol III-expressed dlhRNAs did not compete with endogenous and exogenous microRNAs to disrupt the RNAi pathway. The versatility of expressed lhRNAs is greatly expanded and we provide a mechanism for generating transcripts with modular lhRNAs motifs that contribute to improved coRNAi
    corecore