9 research outputs found

    A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer

    Get PDF
    Funding Information: D.B. has consulted for NanoString, reports honoraria from AstraZeneca and has a patent (PCT/GB2020/050221) issued on methods for cancer prognostication. J.R. and M.A.B. have consulted for Achilles Therapeutics. N.M. has stock options in and has consulted for Achilles Therapeutics. N.M. holds European patents relating to targeting neoantigens (PCT/EP2016/059401), identifying patient response to immune checkpoint blockade (PCT/EP2016/071471), determining HLA loss of heterozygosity (PCT/GB2018/052004) and predicting survival rates of patients with cancer (PCT/GB2020/050221). A.H. attended one advisory board for Abbvie, Roche and GRAIL, and reports personal fees from Abbvie, Boehringer Ingelheim, Takeda, AstraZeneca, Daiichi Sankyo, Merck Serono, Merck/MSD, UCB and Roche for delivering general education/training in clinical trials. A.H. owned shares in Illumina and Thermo Fisher Scientific (sold in 2020) and receives fees for membership of Independent Data Monitoring Committees for Roche-sponsored clinical trials. S.A.Q. is co-founder and Chief Scientific Officer of Achilles Therapeutics. A.C.H. is a board member and equity holder in ImmunoQure, AG and Gamma Delta Therapeutics, and is an equity holder in Adaptate Biotherapeutics and chair of the scientific advisory board. C.S. acknowledges grant support from Pfizer, AstraZeneca, Bristol Myers Squibb, Roche-Ventana, Boehringer Ingelheim, Archer Dx Inc (collaboration in minimal residual disease-sequencing technologies) and Ono Pharmaceuticals, is an AstraZeneca Advisory Board member and Chief Investigator for the MeRmaiD1 clinical trial. C.S has consulted for Amgen, AstraZeneca, Bicycle Therapeutics, Bristol Myers Squibb, Celgene, Genentech, GlaxoSmithKline, GRAIL, Illumina, Medixci, Metabomed, MSD, Novartis, Pfizer, Roche-Ventana and Sarah Cannon Research Institute. C.S. has stock options in Apogen Biotechnologies, Epic Biosciences and GRAIL, and has stock options and is co-founder of Achilles Therapeutics. C.S. holds patents relating: to assay technology to detect tumor recurrence (PCT/GB2017/053289); to targeting neoantigens (PCT/EP2016/059401), identifying patent response to immune checkpoint blockade (PCT/EP2016/071471), determining HLA loss of heterozygosity (PCT/GB2018/052004), predicting survival rates of patients with cancer (PCT/GB2020/050221); to treating cancer by targeting Insertion/deletion (indel) mutations (PCT/GB2018/051893); to identifying indel mutation targets (PCT/GB2018/051892); to methods for lung cancer detection (PCT/US2017/028013); and to identifying responders to cancer treatment (PCT/GB2018/051912). The remaining authors declare no competing interests. Funding Information: We thank the Oxford Genomics Centre at the Wellcome Centre for Human Genetics (funded by Wellcome Trust grant no. 203141/Z/16/Z) for the generation and initial processing of the RNA-seq data from sorted TILs. We thank S. Bola for technical support and S. Vanloo for administrative support. The GTEx project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by the NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. Y.W. was supported by a Wellcome Trust Clinical Research Career Development Fellowship (no. 220589/Z/20/Z), an Academy of Medical Sciences Starter Grant for Clinical Lecturers, a National Institute for Health Research (NIHR) Academic Clinical Lectureship and the NIHR University College London Hospitals Biomedical Research Centre. D.B. was supported by funding from the NIHR University College London Hospitals Biomedical Research Centre, the ideas 2 innovation translation scheme at the Francis Crick Institute, the Breast Cancer Research Foundation (BCRF) and a Cancer Research UK (CRUK) Early Detection and Diagnosis Project award. M.J.H. is a CRUK Fellow and has received funding from CRUK, NIHR, Rosetrees Trust, UKI NETs and the NIHR University College London Hospitals Biomedical Research Centre. C.S. is Royal Society Napier Research Professor. This work was supported by the Francis Crick Institute which receives its core funding from CRUK (no. FC001169), the UK Medical Research Council (no. FC001169) and the Wellcome Trust (no. FC001169). This research was funded in whole, or in part, by the Wellcome Trust (no. FC001169). For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission. C.S. is funded by CRUK (TRACERx, PEACE and CRUK Cancer Immunotherapy Catalyst Network), CRUK Lung Cancer Centre of Excellence (no. C11496/A30025), the Rosetrees Trust, Butterfield and Stoneygate Trusts, NovoNordisk Foundation (ID16584), Royal Society Professorship Enhancement Award (no. RP/EA/180007), the NIHR Biomedical Research Centre at University College London Hospitals, the CRUK–University College London Centre, Experimental Cancer Medicine Centre and the BCRF. This work was supported by a Stand Up To Cancer‐LUNGevity-American Lung Association Lung Cancer Interception Dream Team Translational Research Grant (grant no. SU2C-AACR-DT23-17 to S. M. Dubinett and A. E. Spira). Stand Up To Cancer is a division of the Entertainment Industry Foundation. Research grants are administered by the American Association for Cancer Research, the Scientific Partner of SU2C. C.S. receives funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (no. FP7/2007-2013) Consolidator Grant (no. FP7-THESEUS-617844), European Commission ITN (no. FP7-PloidyNet 607722), an ERC Advanced Grant (PROTEUS) from the ERC under the European Union’s Horizon 2020 research and innovation program (grant no. 835297), and Chromavision from the European Union’s Horizon 2020 research and innovation program (grant no. 665233). Publisher Copyright: © 2022, The Author(s).Peer reviewedPublisher PD

    Ultrasonographic assessment of altered anatomical relationship between internal jugular vein and common carotid artery with supraglottic airway in children: LMA vs i-gel™

    No full text
    Background and Aims: Use of ultrasound (US) during internal jugular vein (IJV) cannulation reduces the risk of associated complications in children under general anaesthesia. We studied the effect of two varieties of supraglottic airway device (SGAD), the Ambu AuraOnce™ LMA (Ambu LMA), and i-gel™ on the anatomical relationship between IJV and common carotid artery (CCA). Both these SGAD are known to have similar safety profile in paediatric age group. Methods: A total of 62 children were randomly allocated into 2 groups. In group L: Ambu AuraOnce™ LMA (Ambu LMA) and in group I: i-gel™ was inserted. After induction of GA, US images were taken with head in neutral and 30 degrees rotated to the opposite side both before and after insertion of SGAD. The relationship between IJV and CCA was noted as lateral, anterolateral, and anterior. Degree of overlap between the two vessels was also noted. Results: Lateral rotation of the head significantly alters the relationship between the IJV and CCA and also increases the degree of overlap between them. Though these changes were noted to be similar with both varieties of SGAD, but between the two varieties of SGAD, these changes were significantly higher in group I. Conclusion: Higher oesophageal sealing pressure exerted by i-gel™ as compared to other SGAD might cause increased distortion of the surrounding soft tissue leading to altered anatomical relationship between IJV and CCA, which makes the CCA vulnerable to puncture during IJV cannulation using landmark technique

    Comparison of ultrasound imaging in transverse median and parasagittal oblique planes for thoracic epidurals: A pilot study

    No full text
    Background and Aims: The use of ultrasound (US) scanning to assess the depth of epidural space to prevent neurological complications is established in current practice. In this study, we hypothesised that pre-puncture US scanning for estimating the depth of epidural space for thoracic epidurals is comparable between transverse median (TM) and paramedian sagittal oblique (PSO) planes. Methods: We performed pre-puncture US scanning in 32 patients, posted for open abdominal surgeries. The imaging was done to detect the depth of epidural space from skin (ultrasound depth [UD]) and needle insertion point, in parasagittal oblique plane in PSO group and transverse median plane in TM group. Subsequently, epidural space was localised through the predetermined insertion point by 'loss of resistance' technique and needle depth (ND) to the epidural space was marked. Correlation between the UD and actual ND was calculated and concordance correlation coefficient (CCC) was used to determine the degree of agreement between UD and ND in both the planes. Results: The primary outcome, i.e., the comparison between UD and ND, done using Pearson correlation coefficient, was 0.99 in both PSO and TM groups, and the CCC was 0.93 (95% confidence interval [95% CI]: 0.81–0.97) and 0.90 (95% CI: 0.74–0.96) in PSO and TM groups respectively, which shows a strong positive association between UD and ND in both groups. Conclusion: The use of pre-puncture US scanning in both PSO and TM planes for estimating the depth of epidural space at the level of mid- and lower-thoracic spine is comparable

    Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis

    No full text
    There is no report on the gene expression profile of retinoblastoma (Rb). We analyzed the gene expression profile of Rb by the microarray technique. One thousand four genes were upregulated and 481 genes were downregulated. Microarray data were confirmed by semiquantitative RT-PCR for 5 genes in Rb samples: CDC25A, C17orf75, ERBB3, LATS2, and CHFR. Clusters of differentially expressed genes were identified on chromosomes 1, 16, and 17. Based on the expression profile, we hypothesized that the PI3K/AKT/mTOR (insulin signaling) pathway might be dysregulated in Rb. Our semiquantitative RT-PCR analysis of the PIK3CA, AKT1, FRAP1, and RPS6KB1 genes in Rb samples supported this hypothesis. We suggest that known inhibitors of this pathway could be evaluated for the treatment of Rb

    Abstracts of National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020

    No full text
    This book presents the abstracts of the papers presented to the Online National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020 (RDMPMC-2020) held on 26th and 27th August 2020 organized by the Department of Metallurgical and Materials Science in Association with the Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. Conference Title: National Conference on Research and Developments in Material Processing, Modelling and Characterization 2020Conference Acronym: RDMPMC-2020Conference Date: 26–27 August 2020Conference Location: Online (Virtual Mode)Conference Organizer: Department of Metallurgical and Materials Engineering, National Institute of Technology JamshedpurCo-organizer: Department of Production and Industrial Engineering, National Institute of Technology Jamshedpur, Jharkhand, IndiaConference Sponsor: TEQIP-

    Practice parameter for the diagnosis and management of primary immunodeficiency

    No full text
    corecore