345 research outputs found

    Gas storage

    Get PDF
    International audienceThe continuous increase of energy demands based on fossil fuels in the last years have lead to an increase of greenhouse gases (GHG) emission which strongly contribute to global warming. The main strategies to limit this phenomenon are related to the efficient capture of these gases and to the development of renewable energies sources with limited environmental impact. Particularly, carbon dioxide (CO2) and methane (CH4) are the main constituents of greenhouse gases while hydrogen (H2) is considered an alternative clean energy source to fossil fuels. Therefore, tremendous research to store these gases has been reported by several approaches and among them the physisorption on activated carbons (AC) have received significant attention. Their abundance, low cost and tunable porous structure and chemical functionalities with an existing wide range of precursors that includes bio-wastes make them ideal candidates for gas applications. This chapter presents the recent developments on CH4, CO2 and H2 storage by activated carbons with focus on biomass as precursor materials. An analysis of the main carbon properties affecting the AC's adsorption capacity (i.e. specific surface area, pore size and surface chemistry) is discussed in detail herein

    Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

    Get PDF
    The field of metal-organic framework based mixed matrix membranes (M(4)s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M(4)s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M-4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined.European Commission FP7 608490 ERC 33574

    Molecular dynamics of CH4/N2 mixtures on a flexible graphene layer: adsorption and selectivity case study

    Get PDF
    We theoretically investigate graphene layers, proposing them as membranes of subnanometer size suitable for CH4/N2 separation and gas uptake. The observed potential energy surfaces, representing the intermolecular interactions within the CH4/N2 gaseous mixtures and between these and the graphene layers, have been formulated by adopting the so-called Improved Lennard-Jones (ILJ) potential, which is far more accurate than the traditional Lennard-Jones potential. Previously derived ILJ force fields are used to perform extensive molecular dynamics simulations on graphene's ability to separate and adsorb the CH4/N2 mixture. Furthermore, the intramolecular interactions within graphene were explicitly considered since they are responsible for its flexibility and the consequent out-of-plane movements of the constituting carbon atoms. The effects on the adsorption capacity of graphene caused by introducing its flexibility in the simulations are assessed via comparison of different intramolecular force fields giving account of flexibility against a simplified less realistic model that considers graphene to be rigid. The accuracy of the potentials guarantees a quantitative description of the interactions and trustable results for the dynamics, as long as the appropriate set of intramolecular and intermolecular force fields is chosen. In particular it is shown that only if the flexibility of graphene is explicitly taken into account, a simple united-atom interaction potential can provide correct predictions. Conversely, when using an atomistic model, neglecting in the simulations the intrinsic flexibility of the graphene sheet has a minor effect. From a practical point of view, the global analysis of the whole set of results proves that these nanostructures are versatile materials competitive with other carbon-based adsorbing membranes suitable to cope with CH4 and N2 adsorption

    Covalent and electrostatic incorporation of amines into hypercrosslinked polymers for increased CO2 selectivity

    Get PDF
    Two methods of incorporating functional groups rich in nitrogen into low cost microporous hypercrosslinked polymers (HCPs) have been evaluated and the effects on the carbon dioxide CO2/N2 IAST selectivity were measured. Electrostatic incorporation of an ammonium salt into a sulfonic acid‐containing HCP polymer afforded a static CO2 uptake of 2.5 mmol g−1 with a CO2/N2 IAST selectivity of 42:1 at 1 bar and 298 K. Using column breakthrough measurements with a 15:85 CO2/N2 mixture at 298 K and 1 bar, a selectivity of 17:1 was obtained. However, varying the counterion resulted in polymers with lower CO2/N2 selectivity values. Decoration of the parent polymer with CO2‐philic imidazole followed by electrostatic ammonium salt incorporation blocked some of the micropores reducing the selectivity which re‐emphasizes the role and importance of pore width for CO2/N2 selectivity

    Molecular simulation of multi-component adsorption processes related to carbon capture in a high surface area, disordered activated carbon

    Get PDF
    AbstractWe employ a previously developed model of a high surface area activated carbon, based on a random packing of small fragments of a carbon sheet, functionalized with hydroxyl surface groups, to explore adsorption of water and multicomponent mixtures under conditions representing typical carbon capture processes. Adsorption of water is initialized and proceeds through the growth of clusters around the surface groups, in a process predominantly governed by hydrogen bond interactions. In contrast, energetically favorable locations for carbon dioxide molecules are different from that for water, with the main contribution coming from the Lennard-Jones interactions with the extended surfaces of the fragments. This explains why over a broad range of conditions small amounts of water do not have any substantial impact on adsorption of carbon dioxide and other species in activated carbons. From the studies of various carbon capture processes, the model material shows promising properties for pre-combustion capture due to large capacity at high pressures and other favorable characteristics
    • 

    corecore