26 research outputs found
Multiple Signalling Pathways Establish Cell Fate and Cell Number in Drosophila Malpighian Tubules
AbstractA unique cell, the tip mother cell, arises in the primordium of each Drosophila Malpighian tubule by lateral inhibition within a cluster of achaete-expressing cells. This cell maintains achaete expression and divides to produce daughters of equivalent potential, of which only one, the tip cell, adopts the primary fate and continues to express achaete, while in the other, the sibling cell, achaete expression is lost (M. Hoch et al., 1994, Development 120, 3439–3450). In this paper we chart the mechanisms by which achaete expression is differentially maintained in the tip cell lineage to stabilise cell fate. First, wingless is required to maintain the expression of achaete in the tubule primordium so that wingless mutants lack tip cells. Conversely, increasing wingless expression results in the persistence of achaete expression in the cell cluster. Second, Notch signalling is restricted by the asymmetric segregation of Numb, as the tip mother cell divides, so that achaete expression is maintained only in the tip cell. In embryos mutant for Notch tip cells segregate at the expense of sibling cells, whereas in numb neither daughter cell adopts the tip cell fate resulting in tubules with two sibling cells. Conversely, when numb is overexpressed two tip cells segregate and tubules have no sibling cells. Analysis of cell proliferation in the developing tubules of embryos lacking Wingless after the critical period for tip cell allocation reveals an additional requirement for wingless for the promotion of cell division. In contrast, alteration in the expression of numb has no effect on the final tubule cell number
Age-dependent impact of the major common genetic risk factor for COVID-19 on severity and mortality
AG has received support by NordForsk Nordic Trial Alliance (NTA) grant, by Academy of
Finland Fellow grant N. 323116 and the Academy of Finland for PREDICT consortium N.
340541.
The Richards research group is supported by the Canadian Institutes of Health Research
(CIHR) (365825 and 409511), the Lady Davis Institute of the Jewish General Hospital, the
Canadian Foundation for Innovation (CFI), the NIH Foundation, Cancer Research UK,
Genome Québec, the Public Health Agency of Canada, the McGill Interdisciplinary Initiative in
Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS). TN is supported
by a research fellowship of the Japan Society for the Promotion of Science for Young
Scientists. GBL is supported by a CIHR scholarship and a joint FRQS and Québec Ministry of
Health and Social Services scholarship. JBR is supported by an FRQS Clinical Research
Scholarship. Support from Calcul Québec and Compute Canada is acknowledged. TwinsUK is
funded by the Welcome Trust, the Medical Research Council, the European Union, the
National Institute for Health Research-funded BioResource and the Clinical Research Facility
and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation Trust in
partnership with King’s College London. The Biobanque Québec COVID19 is funded by FRQS,
Genome Québec and the Public Health Agency of Canada, the McGill Interdisciplinary
Initiative in Infection and Immunity and the Fonds de Recherche Québec Santé. These funding
agencies had no role in the design, implementation or interpretation of this study.
The COVID19-Host(a)ge study received infrastructure support from the DFG Cluster of
Excellence 2167 “Precision Medicine in Chronic Inflammation (PMI)” (DFG Grant: “EXC2167”).
The COVID19-Host(a)ge study was supported by the German Federal Ministry of Education
and Research (BMBF) within the framework of the Computational Life Sciences funding
concept (CompLS grant 031L0165). Genotyping in COVID19-Host(a)ge was supported by a
philantropic donation from Stein Erik Hagen.
The COVID GWAs, Premed COVID-19 study (COVID19-Host(a)ge_3) was supported by
"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"and also by
the Instituto de Salud Carlos III (CIBERehd and CIBERER). Funding comes from
COVID-19-GWAS, COVID-PREMED initiatives. Both of them are supported by "Consejeria de
Salud y Familias" of the Andalusian Government. DMM is currently funded by the the
Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018).
The Columbia University Biobank was supported by Columbia University and the National
Center for Advancing Translational Sciences, NIH, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official
views of the NIH or Columbia University.
The SPGRX study was supported by the Consejería de Economía, Conocimiento, Empresas y
Universidad #CV20-10150.
The GEN-COVID study was funded by: the MIUR grant “Dipartimenti di Eccellenza 2018-2020”
to the Department of Medical Biotechnologies University of Siena, Italy; the “Intesa San Paolo
2020 charity fund” dedicated to the project NB/2020/0119; and philanthropic donations to the
Department of Medical Biotechnologies, University of Siena for the COVID-19 host genetics
research project (D.L n.18 of March 17, 2020). Part of this research project is also funded by
Tuscany Region “Bando Ricerca COVID-19 Toscana” grant to the Azienda Ospedaliero
Universitaria Senese (CUP I49C20000280002). Authors are grateful to: the CINECA
consortium for providing computational resources; the Network for Italian Genomes (NIG)
(http://www.nig.cineca.it) for its support; the COVID-19 Host Genetics Initiative
(https://www.covid19hg.org/); the Genetic Biobank of Siena, member of BBMRI-IT, Telethon
Network of Genetic Biobanks (project no. GTB18001), EuroBioBank, and RD-Connect, for
managing specimens.
Genetics against coronavirus (GENIUS), Humanitas University (COVID19-Host(a)ge_4) was
supported by Ricerca Corrente (Italian Ministry of Health), intramural funding (Fondazione
Humanitas per la Ricerca). The generous contribution of Banca Intesa San Paolo and of the
Dolce&Gabbana Fashion Firm is gratefully acknowledged.
Data acquisition and sample processing was supported by COVID-19 Biobank, Fondazione
IRCCS Cà Granda Milano; LV group was supported by MyFirst Grant AIRC n.16888, Ricerca
Finalizzata Ministero della Salute RF-2016-02364358, Ricerca corrente Fondazione IRCCS
Ca’ Granda Ospedale Maggiore Policlinico, the European Union (EU) Programme Horizon
2020 (under grant agreement No. 777377) for the project LITMUS- “Liver Investigation:
Testing Marker Utility in Steatohepatitis”, Programme “Photonics” under grant agreement
“101016726” for the project “REVEAL: Neuronal microscopy for cell behavioural examination
and manipulation”, Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361. DP was
supported by Ricerca corrente Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico,
CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della
Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV).
Genetic modifiers for COVID-19 related illness (BeLCovid_1) was supported by the "Fonds
Erasme". The Host genetics and immune response in SARS-Cov-2 infection (BelCovid_2)
study was supported by grants from Fondation Léon Fredericq and from Fonds de la
Recherche Scientifique (FNRS).
The INMUNGEN-CoV2 study was funded by the Consejo Superior de Investigaciones
Científicas.
KUL is supported by the German Research Foundation (LU 1944/3-1) SweCovid is funded by the SciLifeLab/KAW national COVID-19 research program project
grant to Michael Hultström (KAW 2020.0182) and the Swedish Research Council to Robert
Frithiof (2014-02569 and 2014-07606). HZ is supported by Jeansson Stiftelser, Magnus
Bergvalls Stiftelse.
The COMRI cohort is funded by Technical University of Munich, Munich, Germany.
Genotyping for the COMRI cohort was performed and funded by the Genotyping Laboratory of
Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki,
Helsinki, Finland.
These funding agencies had no role in the design, implementation or interpretation of this
study.Background: There is considerable variability in COVID-19 outcomes amongst younger
adults—and some of this variation may be due to genetic predisposition. We characterized the
clinical implications of the major genetic risk factor for COVID-19 severity, and its age-dependent
effect, using individual-level data in a large international multi-centre consortium.
Method: The major common COVID-19 genetic risk factor is a chromosome 3 locus, tagged by
the marker rs10490770. We combined individual level data for 13,424 COVID-19 positive
patients (N=6,689 hospitalized) from 17 cohorts in nine countries to assess the association of this
genetic marker with mortality, COVID-19-related complications and laboratory values. We next
examined if the magnitude of these associations varied by age and were independent from
known clinical COVID-19 risk factors.
Findings: We found that rs10490770 risk allele carriers experienced an increased risk of
all-cause mortality (hazard ratio [HR] 1·4, 95% confidence interval [CI] 1·2–1·6) and COVID-19
related mortality (HR 1·5, 95%CI 1·3–1·8). Risk allele carriers had increased odds of several
COVID-19 complications: severe respiratory failure (odds ratio [OR] 2·0, 95%CI 1·6-2·6),
venous thromboembolism (OR 1·7, 95%CI 1·2-2·4), and hepatic injury (OR 1·6, 95%CI
1·2-2·0). Risk allele carriers ≤ 60 years had higher odds of death or severe respiratory failure
(OR 2·6, 95%CI 1·8-3·9) compared to those > 60 years OR 1·5 (95%CI 1·3-1·9, interaction
p-value=0·04). Amongst individuals ≤ 60 years who died or experienced severe respiratory
COVID-19 outcome, we found that 31·8% (95%CI 27·6-36·2) were risk variant carriers,
compared to 13·9% (95%CI 12·6-15·2%) of those not experiencing these outcomes.
Prediction of death or severe respiratory failure among those ≤ 60 years improved when
including the risk allele (AUC 0·82 vs 0·84, p=0·016) and the prediction ability of rs10490770
risk allele was similar to, or better than, most established clinical risk factors.
Interpretation: The major common COVID-19 risk locus on chromosome 3 is associated with
increased risks of morbidity and mortality—and these are more pronounced amongst individuals
≤ 60 years. The effect on COVID-19 severity was similar to, or larger than most established risk
factors, suggesting potential implications for clinical risk management.Academy of
Finland Fellow grant N. 323116Academy of Finland for PREDICT consortium N.
340541.Canadian Institutes of Health Research
(CIHR) (365825 and 409511)Lady Davis Institute of the Jewish General HospitalCanadian Foundation for Innovation (CFI)NIH FoundationCancer Research UKGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary Initiative in
Infection and Immunity and the Fonds de Recherche Québec Santé (FRQS)Japan Society for the Promotion of Science for Young
ScientistsCIHR scholarship and a joint FRQS and Québec Ministry of
Health and Social Services scholarshipFRQS Clinical Research
ScholarshipCalcul QuébecCompute CanadaWelcome TrustMedical Research CouncEuropean UnionNational Institute for Health Research-funded BioResourceClinical Research Facility
and Biomedical Research Centre based at Guy’s and St. Thomas’ NHS Foundation TrustKing’s College LondonGenome QuébecPublic Health Agency of CanadaMcGill Interdisciplinary
Initiative in Infection and ImmunityFonds de Recherche Québec Santé(DFG Grant: “EXC2167”)(CompLS grant 031L0165)Stein Erik Hagen"Grupo de Trabajo en Medicina Personalizada contra el COVID-19 de Andalucia"Instituto de Salud Carlos III (CIBERehd and CIBERER)COVID-19-GWASCOVID-PREMED initiatives"Consejeria de
Salud y Familias" of the Andalusian GovernmentAndalusian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018)Columbia UniversityNational
Center for Advancing Translational SciencesNIH Grant Number UL1TR001873Consejería de Economía, Conocimiento, Empresas y
Universidad #CV20-10150MIUR grant “Dipartimenti di Eccellenza 2018-2020”“Intesa San Paolo
2020 charity fund” dedicated to the project NB/2020/0119Tuscany Region “Bando Ricerca COVID-19 Toscana”CINECA
consortiumNetwork for Italian Genomes (NIG)COVID-19 Host Genetics InitiativeGenetic Biobank of SienaEuroBioBankRD-ConnectRicerca Corrente (Italian Ministry of Health)Fondazione
Humanitas per la RicercaBanca Intesa San PaoloDolce&Gabbana Fashion FirmCOVID-19 BiobankFondazione
IRCCS Cà Granda MilanoMyFirst Grant AIRC n.16888Ricerca
Finalizzata Ministero della Salute RF-2016-02364358Ricerca corrente Fondazione IRCCS
Ca’ Granda Ospedale Maggiore PoliclinicoEuropean Union (EU) Programme Horizon
2020 (under grant agreement No. 777377)“Photonics” “101016726”Fondazione Patrimonio Ca’ Granda “Liver Bible” PR-0361CV PREVITAL “Strategie di prevenzione primaria nella popolazione Italiana” Ministero della
Salute, and Associazione Italiana per la Prevenzione dell’Epatite Virale (COPEV)"Fonds
Erasme"Fondation Léon FredericqFonds de la
Recherche Scientifique (FNRS)Consejo Superior de Investigaciones
CientíficasGerman Research Foundation (LU 1944/3-1)SciLifeLab/KAW national COVID-19 research program project (KAW 2020.0182)Swedish Research Council (2014-02569 and 2014-07606)Jeansson Stiftelser, Magnus
Bergvalls StiftelseTechnical University of Munich, Munich, GermanyGenotyping Laboratory of
Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki,
Helsinki, Finlan
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study
Background:
The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms.
Methods:
International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms.
Results:
‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country.
Interpretation:
This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men
Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study
Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).
Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.
Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]).
Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable