16 research outputs found

    INTEGRAL observations of the gamma-ray binary 1FGL J1018.6-5856

    Full text link
    The Fermi-LAT collaboration has recently reported that one of their detected sources, namely, 1FGL J1018.6-5856, is a new gamma-ray binary similar to LS 5039. This has prompted efforts to study its multi-frequency behavior. In this report, we present the results from 5.78-Ms INTEGRAL IBIS/ISGRI observations on the source 1FGL J1018.6-5856. By combining all the available INTEGRAL data, a detection is made at a significance level of 5.4 sigma in the 18-40 keV band, with an average intensity of 0.074 counts/s . However, we find that, there is non-statistical noise in the image that effectively reduces the significance to about 4 sigma and a significant part of the signal appears to be located in a 0.2-wide phase region, at phases 0.4-0.6 (where even the corrected significance amounts to 90% of the total signal found). Given the scarcity of counts, a variability is hinted at about 3 sigma at the hard X-rays, with an anti-correlation with the Fermi-LAT periodicity. Should this behavior be true, it would be similar to that found in LS 5039, and prompt observations with TeV telescopes at phases anti-correlated with the GeV maximum.Comment: Accepted for publication in Astrophysical Journal Letters; 6 pages, 1 figur

    Cosmic rays in the surroundings of SNR G35.6-0.4

    Get PDF
    HESS J1858+020 is a TeV gamma-ray source that was reported not to have any clear cataloged counterpart at any wavelength. However, it has been recently proposed that this source is indirectly associated with the radio source, re-identified as a supernova remnant (SNR), G35.6-0.4. The latter is found to be middle-aged (30\sim 30 kyr) and to have nearby molecular clouds (MCs). HESS J1858+020 was proposed to be the result of the interaction of protons accelerated in the SNR shell with target ions residing in the clouds. The Fermi Large Area Telescope (LAT) First Source Catalog does not list any source coincident with the position of HESS J1858+020, but some lie close. Here, we analyse more than 2 years of data obtained with the Fermi-LAT for the region of interest, and consider whether it is indeed possible that the closest LAT source, 1FGL J1857.1+0212c, is related to HESS J1858+020. We conclude it is not, and we impose upper limits on the GeV emission originating from HESS J1858+020. Using a simplified 3D model for the cosmic-ray propagation out from the shell of the SNR, we consider whether the interaction between SNR G35.6-0.4 and the MCs nearby could give rise to the TeV emission of HESS J1858+020 without producing a GeV counterpart. If so, the pair of SNR/TeV source with no GeV detection would be reminiscent of other similarly-aged SNRs, such as some of the TeV hotspots near W28, for which cosmic-ray diffusion may be used to explain their multi-frequency phenomenology. However, for HESS J1858+020, we found that although the phase space in principle allows for such GeV--TeV non-correlation to appear, usual and/or observationally constrained values of the parameters (e.g., diffusion coefficients and cloud-SNR likely distances) would disfavor it.Comment: In press in MNRA

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Fermi Large Area Telescope Third Source Catalog

    Get PDF
    postprin

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore