83 research outputs found

    Reproductive Modes in Onion Thrips (Thysanoptera: Thripidae) Populations from New York Onion Fields

    Get PDF
    Thrips exhibit different reproductive modes including thelytoky (females produced from unfertilized eggs), arrhenotoky (males produced from unfertilized eggs and females produced from fertilized eggs) and deuterotoky (females and males produced from unfertilized eggs). We investigated patterns of reproductive modes in onion thrips, Thrips tabaci Lindeman, populations and potential effects of the bacterium Wolbachia and temperature on these modes. We also examined the possibility that male-producing T. tabaci populations were resistant to the frequently used insecticides, lambda-cyhalothrin and methomyl. In New York during 2002-2004, T. tabaci populations were sampled from 20 onion fields and reproductive mode was determined by identifying sex of progeny from virgins. Half of the populations were thelytokous and half were a mix of thelytokous, arrhenotokous and deuterotokous individuals, which we refer to as a male-producing population. In two of four cases, the reproductive mode of a population from the same onion field changed across years, suggesting that populations either mix or an external factor caused the change. To address the latter, we speculated that Wolbachia or high temperature mediated reproductive modes. Samples of T. tabaci representing each reproductive mode were examined for Wolbachia using diagnostic polymerase chain reaction (PCR), but it was not detected. Cytological examination of ovaries from two additional thelytokous lines also showed no evidence of Wolbachia. Similarly, high temperature did not affect sex allocation ratios in either thelytokous or male-producing populations. Male-producing T. tabaci populations were not positively correlated with resistance to lambda-cyhalothrin, or tolerance to methomyl. The role of the different reproductive modes in T. tabaci populations in onion fields remains unclea

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Tocilizumab in refractory Caucasian Takayasu's arteritis: a multicenter study of 54 patients and literature review

    Get PDF
    Objective: To assess the efficacy and safety of tocilizumab (TCZ) in Caucasian patients with refractory Takayasu's arteritis (TAK) in clinical practice. Methods: A multicenter study of Caucasian patients with refractory TAK who received TCZ. The outcome variables were remission, glucocorticoid-sparing effect, improvement in imaging techniques, and adverse events. A comparative study between patients who received TCZ as monotherapy (TCZMONO) and combined with conventional disease modifying anti-rheumatic drugs (cDMARDs) (TCZCOMBO) was performed. Results: The study comprised 54 patients (46 women/8 men) with a median [interquartile range (IQR)] age of 42.0 (32.5-50.5) years. TCZ was started after a median (IQR) of 12.0 (3.0-31.5) months since TAK diagnosis. Remission was achieved in 12/54 (22.2%), 19/49 (38.8%), 23/44 (52.3%), and 27/36 (75%) patients at 1, 3, 6, and 12 months, respectively. The prednisone dose was reduced from 30.0 mg/day (12.5-50.0) to 5.0 (0.0-5.6) mg/day at 12 months. An improvement in imaging findings was reported in 28 (73.7%) patients after a median (IQR) of 9.0 (6.0-14.0) months. Twenty-three (42.6%) patients were on TCZMONO and 31 (57.4%) on TCZCOMBO: MTX (n = 28), cyclosporine A (n = 2), azathioprine (n = 1). Patients on TCZCOMBO were younger [38.0 (27.0-46.0) versus 45.0 (38.0-57.0)] years; difference (diff) [95% confidence interval (CI) = -7.0 (-17.9, -0.56] with a trend to longer TAK duration [21.0 (6.0-38.0) versus 6.0 (1.0-23.0)] months; diff 95% CI = 15 (-8.9, 35.5), and higher c-reactive protein [2.4 (0.7-5.6) versus 1.3 (0.3-3.3)] mg/dl; diff 95% CI = 1.1 (-0.26, 2.99). Despite these differences, similar outcomes were observed in both groups (log rank p = 0.862). Relevant adverse events were reported in six (11.1%) patients, but only three developed severe events that required TCZ withdrawal. Conclusion: TCZ in monotherapy, or combined with cDMARDs, is effective and safe in patients with refractory TAK of Caucasian origin.Funding: This work was partially supported by RETICS Programs, RD08/0075 (RIER), RD12/0009/0013 and RD16/0012 from “Instituto de Salud Carlos III” (ISCIII) (Spain)

    Izaña Atmospheric Research Center. Activity Report 2021-2022

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    Red Nacional de reconocedores de suelos.

    Get PDF
    Los relevamientos sistemáticos de suelos en Argentina comenzaron en la década de 1960, en el marco del Plan Mapa de Suelos. Dicho plan, desarrollado y liderado por el INTA, dio impulso a la formación de especialistas y a la producción de cartografía de suelos a diferentes escalas. Sin embargo, a partir del año 2000 las actividades se redujeron notablemente y gran parte de los equipos provinciales formados hasta ese momento se desarticularon. Desde entonces los relevamientos continuaron de manera aislada sólo en aquellas provincias donde se mantuvieron los grupos de trabajo. Este hecho condujo a que actualmente diferentes regiones del país no cuenten con información acerca de las propiedades y distribución de suelos a una escala adecuada para la toma de decisiones. En este contexto, en el 2018 se crea la Red Nacional de Reconocedores de Suelos (RNRS) que organiza las capacidades técnicas y operativas a nivel nacional para dar pronta respuesta a la creciente demanda de cartografía. Se trata de un equipo interinstitucional e interdisciplinario de especialistas distribuidos por todo el país, que realiza tareas de relevamiento, produce y difunde cartografía básica y utilitaria de suelos, ofrece capacitación y genera espacios de discusión y actualización metodológica. A la fecha, la RNRS ha relevado aproximadamente 760.000 ha en el sur de Córdoba, estimando completar durante el presente año el relevamiento del departamento Río Cuarto. Esta estrategia organizacional permitirá avanzar en el mapeo semidetallado de suelos en nuestro país, estableciendo vinculaciones sinérgicas entre profesionales de diferentes instituciones a fin de fortalecer y potenciar los equipos de trabajo en cada región. El motivo de esta contribución es presentar la RNRS, sus objetivos, avances a la fecha y desafíos a futuro, haciendo una breve revisión del estado actual de los relevamientos a escala semidetallada en nuestro país.Fil: Moretti, Lucas M. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Cerro Azul; ArgentinaFil: Rodriguez, Darío M. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Schulz, Guillermo A. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Kurtz, Ditmar Bernardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; ArgentinaFil: Altamirano D. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: Amin, S. Universidad Nacional de Río Cuarto; ArgentinaFil: Angelini, Marcos Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Wageningen University. Soil Geography and Landscape group; Holanda. International Soil Reference and Information Centre. World Soil Information; HolandaFil: Babelis, German Claudio. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Juan; ArgentinaFil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Bedendo, Dante Julian. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Paraná; ArgentinaFil: Boldrini, C. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Agencia de Extensión Rural Río Cuarto; AgentinaFil: Bongiovanni, C. Universidad Nacional de Río Cuarto; ArgentinaFil: Bozzer, S. Universidad Nacional de Río Cuarto; ArgentinaFil: Cabrera, A. Universidad Nacional de Río Cuarto; ArgentinaFil: Canale, A. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Agencia de Extensión Rural Río Cuarto; AgentinaFil: Chilano, Y. Universidad Nacional de Río Cuarto; ArgentinaFil: Cholaky, Carmen. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Cisneros; José Manuel. Universidad Nacional de Río Cuarto. Cátedra de Uso y Manejo de Suelos; ArgentinaFil: Colazo, Juan Cruz. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Luis; ArgentinaFil: Corigliano, J. Universidad Nacional de Río Cuarto; ArgentinaFil: Degioanni, Américo José. Universidad Nacional Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Ecología Agraria; ArgentinaFil: de la Fuente, Juan Carlos Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Escobar, Dardo. Ministerio de Agricultura, Ganadería y Pesca; ArgentinaFil: Faule, L. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi. Córdoba. ArgentinaFil: Galarza, Carlos Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: González, J. Universidad Nacional de Río Cuarto; ArgentinaFil: Holzmann, R. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Alto Valle; ArgentinaFil: Irigoin, Julieta. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Luján. Departamento Tecnología; ArgentinaFil: Lanfranco, M. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; ArgentinaFil: León Giacosa, C. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Matteio, J.P. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; ArgentinaFil: Márquez, C. Gobierno de Córdoba. Ministerio de Agricultura y Ganadería; ArgentinaFil: Marzari, R. Universidad Nacional de Río Cuarto; ArgentinaFil: Mattalia, M.L. Universidad Nacional de Río Cuarto; ArgentinaFil: Morales Poclava, P.C. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Salta; ArgentinaFil: Muñoz, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Paladino, Ileana Ruth. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos; Argentina. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; ArgentinaFil: Parra, B. Universidad Nacional de Río Cuarto; ArgentinaFil: Pérez, M. Gobierno de Córdoba. Ministerio de Agricultura y Ganadería; ArgentinaFil: Pezzola, A. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Perucca, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Agencia de Extensión Rural Río Cuarto; ArgentinaFil: Porcel de Peralta, R. Gobierno de Córdoba. Ministerio de Agricultura y Ganadería; ArgentinaFil: Renaudeau, S. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; ArgentinaFil: Salustio, M. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez. Agencia de Extensión Rural Río Cuarto; ArgentinaFil: Sapino, V. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Tenti Vuegen, L.M. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Suelos. ArgentinaFil: Tosolini, R. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Vicondo, M.E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Manfredi; Argentina. Universidad Nacional de Córdoba. ArgentinaFil: Vizgarra, L.A. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Quimili; ArgentinaFil: Ybarra, D.D. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; ArgentinaFil: Winschel, C. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Zamora, E. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Corrientes; Argentin

    Combinations of single-top-quark production cross-section measurements and vertical bar f(LV)V(tb)vertical bar determinations at root s=7 and 8 TeV with the ATLAS and CMS experiments

    Get PDF
    This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised
    corecore