6 research outputs found

    A search for pair-produced resonances in four-jet final states at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb−1 − 1 of √ s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, ̃ t ~ , which decays promptly into two quarks through R-parity-violating couplings. Top squarks with masses in the range 100 GeV<̃<410 100 GeV < m t ~ < 410 GeV GeV are excluded at 95% confidence level. If the decay is into a b-quark and a light quark, a dedicated selection requiring two b-tags is used to exclude masses in the ranges 100 GeV<̃<470 100 GeV < m t ~ < 470 GeV GeV and 480 GeV<̃<610 480 GeV < m t ~ < 610 GeV GeV . Additional limits are set on the pair-production of massive colour-octet resonances

    Measurements of electroweak Wjj production and constraints on anomalous gauge couplings with the ATLAS detector

    Get PDF
    Measurements of the electroweak production of a W boson in association with two jets at high dijet invariant mass are performed using root s = 7 and 8 TeV proton-proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb(-1) of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a W boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process

    In situ Effect of Nanohydroxyapatite Paste in Enamel Teeth Bleaching

    No full text
    Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Toxicologia. Ananindeua, PA, Brasil.Federal University of Para. Department of Restorative Dentistry. Belem, PA, Brazil.AIM: Evaluate in situ the effect of nanohydroxyapatite paste (nano-HAP) before bleaching with hydrogen peroxide 35% (HP35%) by ion chromatography (IC) Knoop hardness number (KHN) and tristimulus colorimetry (TC). MATERIALS AND METHODS: A total of 60 fragments were obtained from third molars included (3 mm × 3 mm × 3 mm) and the specimens were divided into three groups (n = 20): Gas chromatography (CG) (negative control group) = no bleaching; HP35% (positive control group) = HP35% whitening (whiteness HP35%); nano-HAP = application for 10 minutes before bleaching treatment + HP35%. The specimens were fixed to the volunteers' molars. The KHN and TC were measured before and after bleaching. For IC, the dentin layer was removed, leaving the enamel that was crushed, and autoclaved for chemical quantification (calcium, fluorine, and phosphorus). The results of KHN and TC were analyzed statistically by analysis of variance (ANOVA) followed by Tukey test (p < 0.05). RESULTS: The HP35% group showed reduction of the Ca, F, and P ions. The initial and final KHN mean of the CG and nano-HAP did not differ statistically; however, the group of HP35% did differ statistically. The mean ΔE of the HP35% and nano-HAP groups did not differ statistically from each other. However, they differed from the CG. CONCLUSION: The nano-HAP paste preserved the KHN, promoted the lower loss of Ca and P ions and an increase of F ions when compared with the CG, but did not influence the effectiveness of the bleaching treatment. CLINICAL SIGNIFICANCE: Nano-HA is a biomaterial that has shown positive results in the prevention of deleterious effects on the enamel by the action of the office bleaching treatment

    Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2

    Get PDF
    International audienceWith the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13  TeV\text {TeV} for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb1^{-1} of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13  TeV\text {TeV} . The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV\text {GeV} is quantified using a novel, data-driven, method. The method uses the energy loss,  dE/dx{\text { d}}{} \textit{E}/d\textit{x} , to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006 (stat.)±0.014 (syst.)0.061 \pm 0.006\ {\text {(stat.)}} \pm 0.014\ {\text {(syst.)}} and 0.093±0.017 (stat.)±0.021 (syst.)0.093 \pm 0.017\ {\text {(stat.)}}\pm 0.021\ {\text {(syst.)}} for jet transverse momenta of 200–400  GeV\text {GeV} and 1400–1600  GeV\text {GeV} , respectively
    corecore