Neves et al. BMC Proceedings 2010, 4(Suppl 2):P40 http://www.biomedcentral.com/1753-6561/4/S2/P40

POSTER PRESENTATION

Open Access

Osteosarcoma contains a subpopulation of cancer stem-like cells that are highly resistant to radiotherapy

Sara RM Neves^{1*}, Aurio OG Lopes¹, Anália do Carmo², Antero J Abrunhosa³, Paulo CPS Simões⁴, Artur A Paiva⁵, M Filomena Botelho¹, Célia MF Gomes¹

From 16th International Charles Heidelberger Symposium on Cancer Research Coimbra, Portugal. 26-28 September 2010

Aim

The cancer stem cell (CSC) theory states that tumors contain a subset of cells responsible for tumor initiation and growth and recurrence after treatments. We aimed to identify the presence of putative CSCs in a human MNNG/HOS osteosarcoma cell line and investigate their role in response to radiotherapy.

Methods

The isolation of CSCs was performed using the sphere formation assay in serum-free medium in non-adherent conditions. The cells were characterized for the expression of mesenchymal stem cell markers (CD90⁺/ CD105⁺/CD73⁺) by flow cytometry. MNNG/HOS and CSCs were irradiated with X-rays at different doses (0-20Gy). The sensitivity to ionizing radiation was evaluated using the MTT assay after 7 days. Cell-cycle responses were studied at 24h post-irradiation using propidium iodide staining.

Results

A subset of CSCs was identified in the MNNG/HOS cell line. The isolated cells formed sphere-clusters and were positive for MSC markers. The mean lethal dose (LD50) obtained for CSCs was of 8.0 ± 3.0Gy, significantly higher than for MNNG/HOS cells (LD50 = 3.4 ± 0.6 Gy, p < 0.05). It was observed a dose dependent cell-cycle arrest in G₂/M phase at 24h, in the MNNG/HOS cells. CSCs cell-cycle progression remained unaltered.

* Correspondence: sara.neves87@gmail.com ¹Institute of Biophysics and Biomathematics - IBILI - FMUC, Coimbra, Portugal Full list of author information is available at the end of the article

Conclusions

Osteosarcoma contains a subset of cells with stem-like properties that are relatively resistant to radiation. The absence of alterations in cell-cycle progression of CSCs suggests that these cells may have higher capacity to repair the irradiation-induced DNA lesions and increased DNA damage checkpoints signaling. These results suggest that radiotherapy may not address the CSCs subpopulation allowing them to survive and regenerate the tumor.

Author details

Institute of Biophysics and Biomathematics - IBILI - FMUC, Coimbra, Portugal. ²Center for Neurosciences and Cell Biology - CNC, Coimbra, Portugal. ³Institute for Nuclear Sciences Applied to Health - ICNAS, Coimbra, Portugal. ⁴Radiotherapy Service - University Hospital of Coimbra, Coimbra, Portugal. 5Histocompatibility Centre of Coimbra - University Hospital of Coimbra, Coimbra, Portugal.

Published: 24 September 2010

Cite this article as: Neves et al.: Osteosarcoma contains a subpopulation of cancer stem-like cells that are highly resistant to radiotherapy. BMC Proceedings 2010 4(Suppl 2):P40.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- . No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

