65 research outputs found

    Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don't marine protected areas improve reef resilience?

    Get PDF
    Scientists have advocated for local interventions, such as creating marine protected areas and implementing fishery restrictions, as ways to mitigate local stressors to limit the effects of climate change on reef-building corals. However, in a literature review, we find little empirical support for the notion of managed resilience. We outline some reasons for why marine protected areas and the protection of herbivorous fish (especially parrotfish) have had little effect on coral resilience. One key explanation is that the impacts of local stressors (e.g., pollution and fishing) are often swamped by the much greater effect of ocean warming on corals. Another is the sheer complexity (including numerous context dependencies) of the five cascading links assumed by the managed-resilience hypothesis. If reefs cannot be saved by local actions alone, then it is time to face reef degradation head-on, by directly addressing anthropogenic climate change - the root cause of global coral decline

    Colorectal neuroendocrine carcinomas and adenocarcinomas share oncogenic pathways. A clinico-pathologic study of 12 cases

    Get PDF
    OBJECTIVE: Neuroendocrine carcinomas (NECs) are rare neoplasms with an increasing incidence. Oncogenetic pathways of colorectal NEC are still poorly understood, and no treatment standards are available for these rare tumors. METHODS: We analyzed retrospectively the clinical records and histology of 12 patients with colorectal NEC. KRAS and BRAF mutations were investigated after the dissection of exoendocrine and neuroendocrine components. ALK alterations and EML4-ALK transcripts were detected by in-situ hybridization and determination of fusion transcripts, respectively. RESULTS: At the time of diagnosis, the mean age of the patients was 60 years (40-79) and 10 patients had synchronous metastases. A transient response occurred in two patients and one patient treated with cisplatin-etoposide or fluoropyrimidine-oxaliplatin, respectively. Tumor progression-related death occurred in 11 of 12 patients. Ten tumors contained an exocrine component, accounting for 5-70% of the tumor, and the other two contained an amphicrine component. BRAF/KRAS mutations were found in six of 10 tumors, corresponding to BRAF(V600E) (n=2) or KRAS(G12D) (n=2), KRAS(G12V) or KRAS(G13D). DNA was obtained from both exocrine and endocrine components in seven cases, and the BRAF/KRAS status was identical in all cases. Split of the ALK locus was detected in a minority of tumor cells in two of eight cases, but EML4-ALK transcripts were absent. CONCLUSION: The association of an exocrine component in all cases and the similar profile of BRAF/KRAS mutations indicate that colorectal NEC may correspond to a high-grade transformation of colorectal carcinoma. New chemotherapy regimens using targeted therapies should be assessed in these tumors

    Performance and cost efficiency of KRAS mutation testing for metastatic colorectal cancer in routine diagnosis: the MOKAECM study, a nationwide experience.

    Get PDF
    International audiencePURPOSE: Rapid advances in the understanding of cancer biology have transformed drug development thus leading to the approval of targeted therapies and to the development of molecular tests to select patients that will respond to treatments. KRAS status has emerged as a negative predictor of clinical benefit from anti-EGFR antibodies in colorectal cancer, and anti-EGFR antibodies use was limited to KRAS wild type tumors. In order to ensure wide access to tumor molecular profiling, the French National Cancer Institute (INCa) has set up a national network of 28 regional molecular genetics centers. Concurrently, a nationwide external quality assessment for KRAS testing (MOKAECM) was granted to analyze reproducibility and costs. METHODS: 96 cell-line DNAs and 24 DNA samples from paraffin embedded tumor tissues were sent to 40 French laboratories. A total of 5448 KRAS results were collected and analyzed and a micro-costing study was performed on sites for 5 common methods by an independent team of health economists. RESULTS: This work provided a baseline picture of the accuracy and reliability of KRAS analysis in routine testing conditions at a nationwide level. Inter-laboratory Kappa values were >0.8 for KRAS results despite differences detection methods and the use of in-house technologies. Specificity was excellent with only one false positive in 1128 FFPE data, and sensitivity was higher for targeted techniques as compared to Sanger sequencing based methods that were dependent upon local expertise. Estimated reagent costs per patient ranged from €5.5 to €19.0. CONCLUSION: The INCa has set-up a network of public laboratories dedicated to molecular oncology tests. Our results showed almost perfect agreements in KRAS testing at a nationwide level despite different testing methods ensuring a cost-effective equal access to personalized colorectal cancer treatment

    Particle Dark Matter Constraints from the Draco Dwarf Galaxy

    Get PDF
    It is widely thought that neutralinos, the lightest supersymmetric particles, could comprise most of the dark matter. If so, then dark halos will emit radio and gamma ray signals initiated by neutralino annihilation. A particularly promising place to look for these indicators is at the center of the local group dwarf spheroidal galaxy Draco, and recent measurements of the motion of its stars have revealed it to be an even better target for dark matter detection than previously thought. We compute limits on WIMP properties for various models of Draco's dark matter halo. We find that if the halo is nearly isothermal, as the new measurements indicate, then current gamma ray flux limits prohibit much of the neutralino parameter space. If Draco has a moderate magnetic field, then current radio limits can rule out more of it. These results are appreciably stronger than other current constraints, and so acquiring more detailed data on Draco's density profile becomes one of the most promising avenues for identifying dark matter.Comment: 13 pages, 6 figure

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Climate resilience in marine protected areas and the ‘Protection Paradox’

    Get PDF
    Restricting human activities through Marine Protected Areas (MPAs) is assumed to create more resilient biological communities with a greater capacity to resist and recover following climate events. Here we review the evidence linking protection from local pressures (e.g., fishing and habitat destruction) with increased resilience. Despite strong theoretical underpinnings, studies have only rarely attributed resilience responses to the recovery of food webs and habitats, and increases in the diversity of communities and populations. When detected, resistance to ocean warming and recovery after extreme events in MPAs have small effect sizes against a backdrop of natural variability. By contrast, large die-offs are well described from MPAs following climate stress events. This may be in part because protection from one set of pressures or drivers (such as fishing) can select for species that are highly sensitive to others (such as warming), creating a ‘Protection Paradox’. Given that climate change is overwhelming the resilience capacity of marine ecosystems, the only primary solution is to reduce carbon emissions. High-quality monitoring data in both space and time can also identify emergent resilience signals that do exist, in combination with adequate reference data to quantify the initial system state. This knowledge will allow networks of diverse protected areas to incorporate spatial refugia against climate change, and identify resilient biological components of natural systems. Sufficient spatial replication further offers insurance against losses in any given MPA, and the possibility for many weak signals of resilience to accumulate

    Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests

    Get PDF
    At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future.

    Get PDF
    This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
    • 

    corecore