47 research outputs found

    Double Compact Objects II: Cosmological Merger Rates

    Full text link
    The development of advanced gravitational wave (GW) observatories, such as Advanced LIGO and Advanced Virgo, provides impetus to refine theoretical predictions for what these instruments might detect. In particular, with the range increasing by an order of magnitude, the search for GW sources is extending beyond the "local" Universe and out to cosmological distances. Double compact objects (neutron star-neutron star (NS-NS), black hole-neutron star (BH-NS) and black hole-black hole (BH-BH) systems) are considered to be the most promising gravitational wave sources. In addition, NS-NS and/or BH-NS systems are thought to be the progenitors of gamma ray bursts (GRBs), and may also be associated with kilonovae. In this paper we present the merger event rates of these objects as a function of cosmological redshift. We provide the results for four cases, each one investigating a different important evolution parameter of binary stars. Each case is also presented for two metallicity evolution scenarios. We find that (i) in most cases NS-NS systems dominate the merger rates in the local Universe, while BH-BH mergers dominate at high redshift; (ii) BH-NS mergers are less frequent than other sources per unit volume, for all time; and (iii) natal kicks may alter the observable properties of populations in a significant way, allowing the underlying models of binary evolution and compact object formation to be easily distinguished. This is the second paper in a series of three. The third paper will focus on calculating the detection rates of mergers by gravitational wave telescopes.Comment: 8 pages, 10 figures, second in series, accepted for Ap

    The final phase of inspiral of neutron stars: realistic equations of state

    Get PDF
    Coalescing compact star binaries are expected to be among the strongest sources of gravitational radiation to be seen by laser interferometers. We present calculations of the final phase of inspiral of equal mass irrotational neutron star binaries and strange quark star binaries. Six types of equations of state at zero temperature are used - three realistic nuclear equations of state of various softness and three different MIT bag models of strange quark matter. We study the precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain spectral method. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasi-equilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability for binary strange quark stars and by the mass-shedding limit for neutron star binaries. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be around 1100-1460 Hz for two 1.35 solar masses irrotational strange stars described by the MIT bag model and between 800 Hz and 1230 Hz for neutron stars.Comment: 6 pages, 2 figures, Advances in Space Research, in press,doi:10.1016/j.asr.2006.09.021, available online www.sciencedirect.com, paper updated according to the reviewer's suggestions (conclusions unchanged

    Double Compact Objects I: The Significance Of The Common Envelope On Merger Rates

    Full text link
    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from populations synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include: updated wind mass loss rates (allowing for stellar mass black holes up to 80 \msun), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2--3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed "mass gap"). Our findings include: (i) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (ii) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (iii) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (iv) Certain combinations of parameters underpredict the Galactic NS-NS merger rate, and can be ruled out. {\em (v)} Models incorporating delayed supernovae do not agree with the observed NS/BH "mass gap", in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper we will present the detection rates for gravitational wave observatories, using up-to-date signal waveforms and sensitivity curves.Comment: 41 pages, 20 figures, accepted for ApJ & new model

    The SST-1M project for the Cherenkov Telescope Array

    Get PDF
    The SST-1M project, run by a Consortium of institutes from Czech Republic, Poland and Switzerland, has been proposed as a solution for implementing the small-size telescope array of the southern site of the Cherenkov Telescope Array. The technology is a pathfinder for efficient production of cost-effective imaging air Cherenkov telescopes. We report on the main system features and recent upgrades, the performances validation and the operation campaign carried out in 2018

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF
    corecore