98 research outputs found

    Action needed for the EU Common Agricultural Policy to address sustainability challenges

    Get PDF
    Abstract Making agriculture sustainable is a global challenge. In the European Union (EU), the Common Agricultural Policy (CAP) is failing with respect to biodiversity, climate, soil, land degradation as well as socio-economic challenges. The European Commission's proposal for a CAP post-2020 provides a scope for enhanced sustainability. However, it also allows Member States to choose low-ambition implementation pathways. It therefore remains essential to address citizens' demands for sustainable agriculture and rectify systemic weaknesses in the CAP, using the full breadth of available scientific evidence and knowledge. Concerned about current attempts to dilute the environmental ambition of the future CAP, and the lack of concrete proposals for improving the CAP in the draft of the European Green Deal, we call on the European Parliament, Council and Commission to adopt 10 urgent action points for delivering sustainable food production, biodiversity conservation and climate mitigation. Knowledge is available to help moving towards evidence-based, sustainable European agriculture that can benefit people, nature and their joint futures. The statements made in this article have the broad support of the scientific community, as expressed by above 3,600 signatories to the preprint version of this manuscript. The list can be found here (https://doi.org/10.5281/zenodo.3685632). A free Plain Language Summary can be found within the Supporting Information of this article.Peer reviewe

    The geography of biodiversity change in marine and terrestrial assemblages

    Get PDF
    This work was supported by funding to the sChange working group through sDiv, the synthesis center of iDiv, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). S.A.B., H.B., J.M.C., J.H., and M.W. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. S.R.S. was supported by U.S. National Science Foundation grant 1400911. LHA was supported by Fundação para a Ciência e Tecnologia, Portugal (POPH/FSE SFRH/BD/90469/2012), and by the Jane and Aatos Erkko Foundation. M.D. was supported by a Leverhulme Trust Fellowship. A.E.M., F.M., and M.D. were supported by ERC AdG BioTIME 250189 and PoC BioCHANGE 727440. A.G. is supported by the Liber Ero Chair in Biodiversity Conservation.Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.PostprintPostprintPeer reviewe

    Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes

    Get PDF
    Abstract Climate change and other anthropogenic drivers of biodiversity change are unequally distributed across the world. Overlap in the distributions of different drivers have important implications for biodiversity change attribution and the potential for interactive effects. However, the spatial relationships among different drivers and whether they differ between the terrestrial and marine realm has yet to be examined. We compiled global gridded datasets on climate change, land-use, resource exploitation, pollution, alien species potential and human population density. We used multivariate statistics to examine the spatial relationships among the drivers and to characterize the typical combinations of drivers experienced by different regions of the world. We found stronger positive correlations among drivers in the terrestrial than in the marine realm, leading to areas with high intensities of multiple drivers on land. Climate change tended to be negatively correlated with other drivers in the terrestrial realm (e.g. in the tundra and boreal forest with high climate change but low human use and pollution), whereas the opposite was true in the marine realm (e.g. in the Indo-Pacific with high climate change and high fishing). We show that different regions of the world can be defined by Anthropogenic Threat Complexes (ATCs), distinguished by different sets of drivers with varying intensities. We identify 11 ATCs that can be used to test hypotheses about patterns of biodiversity and ecosystem change, especially about the joint effects of multiple drivers. Our global analysis highlights the broad conservation priorities needed to mitigate the impacts of anthropogenic change, with different priorities emerging on land and in the ocean, and in different parts of the world.Peer reviewe

    Testing macroecological abundance patterns: The relationship between local abundance and range size, range position and climatic suitability among European vascular plants

    Get PDF
    Aim: A fundamental question in macroecology centres around understanding the relationship between species' local abundance and their distribution in geographical and climatic space (i.e. the multi‐dimensional climatic space or climatic niche). Here, we tested three macroecological hypotheses that link local abundance to the following range properties: (a) the abundance-range size relationship, (b) the abundance-range centre relationship and (c) the abundance-suitability relationship. Location: Europe. Taxon: Vascular plants. Methods: Distribution range maps were extracted from the Chorological Database Halle to derive information on the range and niche sizes of 517 European vascular plant species. To estimate local abundance, we assessed samples from 744,513 vegetation plots in the European Vegetation Archive, where local species' abundance is available as plant cover per plot. We then calculated the 'centrality', that is, the distance between the location of the abundance observation and each species' range centre in geographical and climatic space. The climatic suitability of plot locations was estimated using coarse‐grain species distribution models (SDMs). The relationships between centrality or climatic suitability with abundance was tested using linear models and quantile regression. We summarized the overall trend across species' regression slopes from linear models and quantile regression using a meta‐analytical approach. Results: We did not detect any positive relationships between a species' mean local abundance and the size of its geographical range or climatic niche. Contrasting yet significant correlations were detected between abundance and centrality or climatic suitability among species. Main conclusions: Our results do not provide unequivocal support for any of the relationships tested, demonstrating that determining properties of species' distributions at large grains and extents might be of limited use for predicting local abundance, including current SDM approaches. We conclude that environmental factors influencing individual performance and local abundance are likely to differ from those factors driving plant species' distribution at coarse resolution and broad geographical extents

    Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    Get PDF
    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones

    Biotic homogenization can decrease landscape-scale forest multifunctionality.

    Get PDF
    Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.We thank the Hainich National Park administration as well as Felix Berthold and Carsten Beinhoff for support of this study and Gerald Kaendler and the Johann Heinrich von Thünen-Institut for providing access to the German National Forest Inventory data. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 265171.This is the final version of the article. It first appeared from the National Academy of Sciences via https://doi.org//10.1073/pnas.151790311
    corecore