243 research outputs found

    A Quantum States Preparation Method Based on Difference-Driven Reinforcement Learning

    Full text link
    Due to the large state space of the two-qubit system, and the adoption of ladder reward function in the existing quantum state preparation methods, the convergence speed is slow and it is difficult to prepare the desired target quantum state with high fidelity under limited conditions. To solve the above problems, a difference-driven reinforcement learning (RL) algorithm for quantum state preparation of two-qubit system is proposed by improving the reward function and action selection strategy. Firstly, a model is constructed for the problem of preparing quantum states of a two-qubit system, with restrictions on the type of quantum gates and the time for quantum state evolution. In the preparation process, a weighted differential dynamic reward function is designed to assist the algorithm quickly obtain the maximum expected cumulative reward. Then, an adaptive e-greedy action selection strategy is adopted to achieve a balance between exploration and utilization to a certain extent, thereby improving the fidelity of the final quantum state. The simulation results show that the proposed algorithm can prepare quantum state with high fidelity under limited conditions. Compared with other algorithms, it has different degrees of improvement in convergence speed and fidelity of the final quantum state.Comment: 12 pages, 9 figure

    A New Implementation of Digital Twins for Fault Diagnosis of Large Industrial Equipment

    Get PDF
    Refurbishment and remanufacturing play a vital role in the sustainability of the large industrial field, which aims at restoring the equipment that is close to the end of their life. The EU-funded project RECLAIM proposes new approaches and techniques to support these two activities in order to achieve saving valuable materials and resources by renewing and recycling the mechanical equipment rather than scraping them when they exceed the end of the lifetime. As the most critical part of predictive maintenance in RECLAIM, the fault diagnosis technique could provide the necessary information about the identification of the failure type, thus making suitable maintenance strategies. In this paper, we propose a novel implementation method that can combine the digital twins with the fault diagnosis of large industrial equipment. Experiment result and analysis demonstrate that the proposed framework performs well for the fault diagnosis of rolling bearing

    ATLASPIX3 Modules for Experiments at Electron-Positron Colliders

    Get PDF
    High-voltage CMOS detectors are being developed for application in High-Energy Physics. ATLASPIX3 is a full-reticle size monolithic pixel detector, consisting of 49000 pixels of dimension 50×150 μm2^2. It has been realized in in TSI 180 nm HVCMOS technology. In view of applications at future electron-positron colliders, multi-chip-modules are built. The module design and its characterization by electrical test and radiation sources will be illustrated, including characterization of shunt regulators for serial chain powering. Lightweight long structure to support and to cool multiple-module chain are also being realized. The multi-chip-modules performance shows no degradation with respect to single-chip devices and the level of integration achieved is suitable for tracking at future e+e- accelerators

    Solution processed graphene structures for perovskite solar cells

    Get PDF
    Organometallic trihalide perovskite light absorber based solar cells have drawn increasing attention because of their recent rapid increase in power conversion efficiency (PCE). These photovoltaic cells have relied significantly on transparent conducting oxide (TCO) electrodes which are costly and brittle. Herein, solution processed transparent conductive graphene films (TCGFs) are utilized, for the first time, as an alternative to traditional TCO electrodes at the electron collecting layer in perovskite solar cells (PSCs). By investigating and optimizing the trade-off between transparency and sheet resistance (Rs) of the graphene films, a PCE of 0.62% is achieved. This PCE is further improved to 0.81% by incorporating graphene structures into both compact and mesoporous TiO2 layers of the solar cell. We anticipate that the present study will lead to further work to develop graphene-based transparent conductive electrodes for future solar cell devices

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography

    Get PDF
    Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue–electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability. Herein, a low-temperature microimprint-lithography technique for the development of micro-topographically functionalized neuroelectrode interfaces in electrodeposited poly(3,4-ethylenedioxythiophene):p-toluene sulfonate (PEDOT:PTS) is described and assessed in vitro. Platinum (Pt) microelectrodes are subjected to electrodeposition of a PEDOT:PTS microcoating, which is subsequently topographically functionalized with an ordered array of micropits, inducing a significant reduction in electrode electrical impedance and an increase in charge storage capacity. Furthermore, topographically functionalized electrodes reduce the adhesion of reactive astrocytes in vitro, evident from morphological changes in cell area, focal adhesion formation, and the synthesis of proinflammatory cytokines and chemokine factors. This study contributes to the understanding of gliosis in complex primary mixed cell cultures, and describes the role of micro-topographically modified neural interfaces in the development of stable microelectrode interfaces

    Moving forwards? Palynology and the human dimension

    Get PDF
    For the greater part of the last century, anthropogenic palynology has made a sustained contribution to archaeology and to Quaternary science in general, and pollen-analytical papers have appeared in Journal of Archaeological Science since its inception. The present paper focuses selectively upon three areas of anthropogenic palynology, enabling some assessment as to whether the field is advancing: land-use studies, archaeological site study, and modelling. The Discussion also highlights related areas including palynomorph identification and associated proxies. There is little doubt that anthropogenic palynology has contributed to the vitality of pollen analysis in general, and although published research can be replicative or incremental, site- and landscape-based studies offer fresh data for further analysis and modelling. The latter allows the testing of both palynological concepts and inferences and can inform archaeological discovery and imagination. Archaeological site studies are often difficult, but palynology can still offer much to the understanding of occupation sites and the discernment of human behaviour patterns within sites

    Molecular dynamics simulation of humic substances

    Get PDF
    © 2014, Orsi. Humic substances (HS) are complex mixtures of natural organic material which are found almost everywhere in the environment, and particularly in soils, sediments, and natural water. HS play key roles in many processes of paramount importance, such as plant growth, carbon storage, and the fate of contaminants in the environment. While most of the research on HS has been traditionally carried out by conventional experimental approaches, over the past 20 years complementary investigations have emerged from the application of computer modeling and simulation techniques. This paper reviews the literature regarding computational studies of HS, with a specific focus on molecular dynamics simulations. Significant achievements, outstanding issues, and future prospects are summarized and discussed
    corecore