318 research outputs found

    Be There In A TIF: What is TIF and Missouri\u27s Need of Reform

    Get PDF
    Tax Increment Financing (“TIF”) is an economic development tool used by local municipalities to lure investment to areas that would not normally receive any. The process starts by having a local municipality or developer propose a redevelopment plan for a particular area. This area must fall into a statutory definition to be eligible for TIF and a “but-for” analysis is required, along with a proposal to a TIF commission. They then will move to approve or disapprove the proposal; if approved, the plan can be implemented for a defined duration. During the implementation, the purpose is for the investment plan to create property tax appreciation that will lead to higher tax revenue, thereby justifying the financing method

    The Importance of Intentional Outdoor Play Spaces for Young Children

    Get PDF
    The purpose of this study was to observe outdoor play in infants and toddlers and examine their traffic patterns throughout the play space as well as their interests in the areas. It was hypothesized that the more intention and careful consideration that goes into planning the play space, the more the children would want to interact with that space rather than other areas. There were 58 participants recruited from a childcare center in a large mid-south community to play and interact with play spaces as well as the educators and peers to learn more about specific interests and patterns associated with outdoor play in young children. The results of this study displayed that children are far more likely to interact with play spaces if there are materials in the area and if those materials are easily age-appropriate and accessible. Play spaces that had little to no materials had little to no interactions, making them seem unappealing to infants and toddlers. Young children chose outdoor play spaces that had accessible and intriguing materials versus spaces with minimal materials

    Proton-Catalyzed Hydrogenation of a d 8 Ir(I) Complex Yields a trans Ir(III) Dihydride

    Get PDF
    Hydrogenation of the (PONOP)Ir(I)CH(3) complex [PONOP = 2,6-bis(di-tert-butylphosphinito)pyridine] yields the unexpected trans-dihydride species (PONOP)IrCH(3)(H)(2). Mechanistic investigations have revealed that this reaction proceeds via proton-catalyzed H(2) cleavage, a pathway that circumvents the intermediacy of the typically invoked cis-dihydride isomer. Protonation yields the cationic (PONOP)Ir(CH(3))(H)(+) complex, which is then trapped by H(2) to yield an eta(2)-H(2) complex. Deprotonation of this species yields the trans-dihydride. Intermediates in the proposed pathway have been confirmed by independent low-temperature syntheses and spectroscopic observations

    Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization

    Get PDF
    Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.

    A d10 Ag(i) amine-borane σ-complex and comparison with a d8 Rh(i) analogue : Structures on the η1 to η2:η2 continuum

    Get PDF
    H3B·NMe3 σ-complexes of d8 [(L1)Rh][BArF4] and d10 [(L1)Ag][BArF4] (where L1 = 2,6-bis-[1-(2,6-diisopropylphenylimino)ethyl]pyridine) have been prepared and structurally characterised. Analysis of the molecular and electronic structures reveal important but subtle differences in the nature of the bonding in these σ-complexes, which differ only by the identity of the metal centre and the d-electron count. With Rh the amine-borane binds in an η2:η2 fashion, whereas at Ag the unsymmetrical {Ag⋯H3B·NMe3} unit suggests a structure lying between the η2:η2 and η1 extremes

    Catalytic Hydrogen Production by Ruthenium Complexes from the Conversion of Primary Amines to Nitriles: Potential Application as a Liquid Organic Hydrogen Carrier

    Get PDF
    The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p-cym)Ru(NHC)Cl2] (NHC=N-heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium-supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long-chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine.The authors thank the financial support from MINECO (CTQ2015-69153-C2-2-R), Generalitat Valenciana (AICO/2015/ 039), and the UniversitatJaume I(P1.1B2015-09).The authors are very grateful to the “Serve is Centrals d’Instr umentac ij Cien- t&fica (SCIC)” of the Universitat Jaume I

    A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction

    Get PDF
    Platinum-based bimetallic nanoparticles are analyzed by the application of density functional theory to a series of tetrahedral Pt3X cluster models, with element X taken from the P-block, preferably group 14, or from the D-block around group 10. Almost identical cluster geometries allow a systematic investigation of electronic effects induced by different elements X. Choosing the propane-to-propene conversion as the desired dehydrogenation reaction, we provide estimates for the activity and selectivity of the various catalysts based on transition state theory. No significant Brønsted-Evans-Polanyi-relation could be found for the given reaction. A new descriptor, derived from an energy decomposition analysis, captures the effect of element X on the rate-determining step of the first hydrogen abstraction. Higher activities than obtained for pure Pt4 clusters are predicted for Pt alloys containing Ir, Sn, Ge and Si, with Pt3Ir showing particularly high selectivity

    Ligand Rearrangement and Hemilability in R hodium(I) and Iridium(I) Complexes Bearing Terphenyl Phosphines

    Get PDF
    We describe the synthesis of a series of cationic rhodium(I) and iridium(I) compounds stabilized by sterically demanding phosphines that contain a terphenyl substituent, PMe 2 Ar’ (Ar’ = 2,6-diarylphenyl radical). Salt metathesis of metal precursors [MCl(COD)(PMe 2 Ar’)] (M = Rh, Ir; COD = cyclooctadiene) with NaBAr F (BAr F = B(3,5-C 6 H 3 (CF 3 ) 2 ) 4 ) results in a series of cationic complexes in which the loss of the chloride ligand is compensated by the appearance of relatively weak π-interactions with one of the flanking aryl rings of the terphenyl substituent. The same experiments carried out with carbonyl compounds [MCl(CO) 2 (PMe 2 Ar’)] led to the corresponding cationic carbonyl complexes, whose CO-induced rearrangement reactivity has been investigated, both experimentally and computationally. The differences in reactivity between rhodium and iridium complexes, and as a result of varying the sterics of terphenyl phosphines are discusse

    The role of neutral Rh(PONOP)H, free NMe2H, boronium and ammonium salts in the dehydrocoupling of dimethylamine-borane using the cationic pincer [Rh(PONOP)(η2-H2)]+ catalyst

    Get PDF
    The σ-amine-borane pincer complex [Rh(PONOP)(η1-H3B·NMe3)][BArF4] [2, PONOP = κ3-NC5H3-2,6-(OPtBu2)2] is prepared by addition of H3B·NMe3 to the dihydrogen precursor [Rh(PONOP)(η2-H2)][BArF4], 1. In a similar way the related H3B·NMe2H complex [Rh(PONOP)(η1-H3B·NMe2H)][BArF4], 3, can be made in situ, but this undergoes dehydrocoupling to reform 1 and give the aminoborane dimer [H2BNMe2]2. NMR studies on this system reveal an intermediate neutral hydride forms, Rh(PONOP)H, 4, that has been prepared independently. 1 is a competent catalyst (2 mol%, ∼30 min) for the dehydrocoupling of H3B·Me2H. Kinetic, mechanistic and computational studies point to the role of NMe2H in both forming the neutral hydride, via deprotonation of a σ-amine-borane complex and formation of aminoborane, and closing the catalytic cycle by reprotonation of the hydride by the thus-formed dimethyl ammonium [NMe2H2]+. Competitive processes involving the generation of boronium [H2B(NMe2H)2]+ are also discussed, but shown to be higher in energy. Off-cycle adducts between [NMe2H2]+ or [H2B(NMe2H)2]+ and amine-boranes are also discussed that act to modify the kinetics of dehydrocoupling

    Catalytic (de)hydrogenation promoted by non-precious metals – Co, Fe and Mn: recent advances in an emerging field

    Full text link
    corecore