

NIH Public Access

Author Manuscript

JAm Chem Soc. Author manuscript; available in PMC 2011 April 7.

Published in final edited form as:

JAm Chem Soc. 2010 April 7; 132(13): 4534–4535. doi:10.1021/ja100168w.

Proton-catalyzed Hydrogenation of a d⁸ lr(I) Complex Yields a *trans* lr(III) Dihydride

Michael Findlater, Wesley H. Bernskoetter, and Maurice Brookhart*

Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Square planar d⁸ iridium(I) complexes, including the iconic Vaska's complex, (*trans*-IrCl(CO)[P(C₆H₅)₃]₂),¹ have been used to explore a wide range of oxidative addition reactions of d⁸ transition metal complexes. These studies established mechanisms ranging from concerted cleavage of nonpolar substrates, stepwise addition of polar substrates, and radical chain reactions of certain RX substrates.² In light of the importance of transition metal hydride complexes in numerous catalytic transformations, including olefin hydrogenation³ and hydroformylation,⁴ the concerted addition of dihydrogen to Ir(I) centers has received particular scrutiny.⁵ Oxidative addition of dihydrogen to afford a kinetically preferred *cis*-dihyride complex is the prevailing pathway. Factors shown to influence the kinetics and thermodynamics of H₂ addition include the mode of substrate approach, metal basicity, and the steric and electronic nature of the ancillary ligands. In cases where the *trans*-dihydride isomer is observed, prior formation of a *cis*-dihyride intermediate is typically invoked.⁶

Milstein has recently reported that hydrogenation of Ir(I) phenyl complex **1** yields the *trans* dihydride complex **2** as the kinetic and thermodynamic product.⁷ The mechanism proposed involved intermediacy of the dearomatized complex **3** formed by water-assisted proton transfer, followed by α^2 -binding of H₂ cis to the phenyl group and transfer of hydrogen from α^2 -H₂ to the methine carbon of the bridge. DFT calculations and deuterium labeling results supported this proposal.⁸

⁽¹⁾

brookhart@email.unc.edu.

Supporting Information Available: Experimental details and pertinent NMR spectra. This material is available free of charge at http://pubs.acs.org.

Findlater et al.

We report here the hydrogenation of a related Ir(I) methyl complex which yields a *trans*dihydride species but via a quite different mechanism involving proton-catalyzed H₂ cleavage, a pathway which circumvents the intermediacy of the *cis*-dihydride isomer.

We recently described the synthesis of an Ir(I) methyl complex supported by the neutral pincer ligand 2,6-bis(di-tert-butylphosphinito)pyridine, (PONOP)Ir(CH₃) (**4-Me**), and its protonation with a non-coordinating acid to yield a remarkably stable five-coordinate, sixteen-electron complex, (PONOP)Ir(H)(Me)⁺ (**4-MeH**⁺).⁹ This complex was found to equilibrate rapidly with an unobserved Ir(I) s-methane complex, (PONOP)Ir(CH₄)⁺, prior to methane loss. To investigate the stability of the related Ir(III) methyl dihydride complex, a frozen benzene-*d*₆ solution of **4-Me** was treated with 1 atm of dihydrogen at -196°C. Warming the solution to ambient temperature and shaking overnight afforded complete conversion to the unexpected *trans*-dihydride complex (PONOP)Ir(CH₃)H₂ (**4-MeH**₂).¹⁰ The ³¹P{¹H} NMR spectrum of **4-MeH**₂ displays a singlet at 182.6 ppm, shifted marginally upfield relative to that for **4-Me**. The corresponding ¹H NMR spectrum exhibits a 2H triplet of quartets at -9.06 ppm (²J_{P-H} = 17 Hz, ³J_{H-H} = 2.4 Hz) corresponding to the Ir-H fragments and a 3H triplet of triplets at 1.05 ppm (³J_{P-H} = 5 Hz, ³J_{H-H} = 2.8 Hz) assigned to the Ir-CH₃ moiety.¹⁰

(2)

Evacuation of the dihydrogen atmosphere from **4-MeH**₂ resulted in reversion to **4-Me** over ca. 1 day at 23°C under a static vacuum. **4-MeH**₂ is stable under dihydrogen in benzene solution at 23°C, but eliminates CH₄ at temperatures above 60°C. Monitoring of the concentrations of [H₂] and both iridium methyl species by NMR spectroscopy in samples containing less than 1 atm of dihydrogen afforded a K_{eq} of 748(34) M⁻¹ (23 °C) for the hydrogenation of **4-Me**.¹⁰

Initial kinetic experiments revealed the rates of hydrogenation were non-uniform. These observations led to speculation that trace amounts of water played a role in the reaction. Indeed, parallel NMR tube experiments in which samples of **4-Me** were spiked with >10 equiv. of water or methanol (added via syringe) revealed complete hydrogenation to **4-MeH**₂ in a matter of minutes for the methanol or water treated samples compared to hours for the control hydrogenation reaction. Two possible mechanisms for the methanol- or water-assisted cleavage of dihydrogen to produce the *trans*-dihydride, **4-MeH**₂, are shown in Figure 1.¹¹ An alternative mechanism in which α -elimination from **4-Me** forms a

J Am Chem Soc. Author manuscript; available in PMC 2011 April 7.

transient carbene intermediate, followed by 1,2-addition of H_2 , was ruled out on the basis of kinetic isotope effect experiments.¹⁰

The first mechanism (Figure 1a) proceeds by the classic *cis*-addition of H_2 to the metal center followed by base-assisted isomerization of the unobserved *cis*-dihydride complex to the *trans*-dihydride species. Water (or alcohol) acts as the base, permitting transient formation of an iridium(I) methyl hydride anion, which could isomerize to reestablish the methyl group *trans* to the pyridyl nitrogen, followed by protonation with the conjugate acid to afford **4-MeH**₂. To assay the ability of base to catalyze the formation of **4-MeH**₂, parallel hydrogenation reactions with **4-Me** were conducted. One sample of the hydrogenation mixture was treated with approximately 5 equiv of triethylamine at -196 °C prior to the warming of benzene- d_6 solutions. Monitoring by NMR spectroscopy revealed no detectable rate enhancement for conversion of **4-MeH**₂ for the amine-containing sample. Since no rate enhancement was observed in the presence of a superior base, it is unlikely that water/alcohol is acting as a base to accelerate the formation of the *trans*-dihydride species.

The second mechanism (Figure 1b), utilizes water/alcohol as a weak acid to protonate **4-Me**, generating small quantities of the iridum(III) methyl hydride cation, **4-MeH**⁺. Subsequent coordination of dihydrogen *trans* to the iridium-hydride ligand and deprotonation by the conjugate base would yield the observed *trans*-dihydride complex. Previous isolation of **4-MeH**⁺ (*vida supra*), offers strong evidence for the viability of this species as an intermediate and permits direct investigation of the subsequent reactions along the proposed hydrogenation pathway.

A frozen solution of **4-MeH**⁺ in methylene chloride- d_2 was treated with 1 atm of dihydrogen at -196 °C and the tube transferred to a pre-cooled (-100 °C) NMR probe. Upon thawing, ¹H and ³¹P NMR spectroscopy indicated near complete conversion (>90%) to the dihydrogen-hydride species, **4-MeH(H₂)**⁺. The presence of the hydride was confirmed by a 1H triplet at -13.37 ppm (²J_{P-H} = 17 Hz) and the coordinated dihydrogen was observed as a 2H broad singlet at -1.98 ppm ($J_{HD} = 34$ Hz in the α^2 -HD complex). Additionally the Ir-CH₃ resonance appears at 0.39 ppm and the ³¹P{¹H} NMR spectrum exhibits a singlet at 174.1 ppm.

Further evidence in support of the proposed mechanism of hydrogenation (Figure 1b) was garnered via *in situ* deprotonation of **4-MeH(H₂)**⁺. Deprotonation of the bound dihydrogen molecule by a conjugate base is a key step in the proposed mechanism for formation of the *trans*-dihydride species without the intermediacy of the *cis*-dihydride isomer. Significantly, addition of 10 equiv. of triethylamine to a methylene chloride- d_2 solution of **4-MeH(H₂)**⁺ at -90 °C (eq 2) resulted in complete conversion to **4-MeH₂** with concomitant formation of the (H)NEt₃B(Ar^F)₄ salt (Ar^F = 3,5-(CF₃)C₆H₃).

J Am Chem Soc. Author manuscript; available in PMC 2011 April 7.

(3)

Experiments employing either D_2O or CH_3OD revealed rapid incorporation of deuterium into the methyl group of **4-Me**. This exchange clearly occurs via deuteration at iridium to give **4-MeD**⁺ followed by reversible reductive coupling to yield **4-(CH_3D)**⁺. This observation is consistent with the equilibrium indicated in the proposed mechanism (Figure 1b).⁹

In summary, we report that proton-catalyzed hydrogenation of an Ir(I) complex yields a *trans*-dihydride iridium(III) complex without the intermediacy of the *cis*-dihydride isomer. The proposed mechanism, shown in Figure 1b, is supported by independent verification of the elementary reaction steps along the proposed pathway.¹¹ Since the bridge atoms are oxygen, the "Milstein mechanism" cannot apply here.^{7,8} It is remarkable that two quite different mechanisms, both water-mediated, can apply to very similar systems. The unusual proton-catalyzed net oxidative addition of dihydrogen seen here serves as an alternative pathway for dihydrogen cleavage by metal complexes sufficiently basic to be protonated by weak acids such as water.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We acknowledge funding by the NSF (Grant No. CHE-0650456) as part of the Center for Enabling New Technologies Through Catalysis and the NIH (Grant No. GM 28938).

References

- 1. Vaska L, DiLuzio JW. J Am Chem Soc 1962;84:679-80.
- See for example, (a) Deutsch PP, Eisenberg R. Chem Rev 1988;88:1147–1161. (b) Abu-Hasanayn F, Goldman AS, Krogh-Jespersen K. Inorg Chem 1994;33:5122–5130. (c) Labinger JA, Bercaw JE. Nature 2002;417:507–514. [PubMed: 12037558]
- 3. Boerner, A.; Holz, J. Transition Metals of Organic Synthesis. Wiley-VCH; Weinheim: 2004.
- 4. Ojima, I.; Tsai, C-Y.; Tzamarioudaki, M.; Bonafoux, D. The hydroformylation reaction. Wiley; Hoboken: 2000. Organic Reactions.
- (a) Kubas GJ. Acc Chem Res 1988;21:120–128. (b) Jessop PG, Morris RH. Coord Chem Rev 1992;121:155–284. (c) Heinekey DM, Oldham WJ Jr. Chem Rev 1993;93:913–926. (d) Esteruelas MA, Oro LA. Chem Rev 1998;98:577–588. [PubMed: 11848909] (e) Kubas, GJ. Metal Dihydrogen and σ-Bond complexes: Structure, Theory and Reactivity. Kluwer; New York: 2001. (f) Johnson CE, Eisenberg R. J Am Chem Soc 1985;107:3148–3160.
- See for example: (a) Salem H, Shimon LJW, Diskin-Posner Y, Leitus G, Ben-David Y, Milstein D. Organometallics 2009;28:4791–4806. (b) Rybtchinski B, Ben-David Y, Milstein D. Organometallics 1997;16:3786–3793. (c) Yoshida T, Otsuka S. J Am Chem Soc 1977;99:2134. (d) Paonessa RS, Trogler WC. J Am Chem Soc 1982;104:1138.
- 7. Ben-Ari E, Leitus G, Shimon LJM, Milstein D. J Am Chem Soc 2006;128:15390. [PubMed: 17132002]
- 8. Iron MA, Ben-Ari E, Cohen R, Milstein D. Dalton Trans 2009:9433–9439. [PubMed: 19859598]
- Bernskoetter WH, Hanson SK, Buzak SK, Davis Z, White PS, Swartz R, Goldberg KI, Brookhart M. J Am Chem Soc 2009;131:8603–8613. [PubMed: 19489584]
- 10. See Supporting Information for these details and an alternative mechanism suggested by a reviewer.
- 11. A reviewer notes that the counteranions differ for the water and methanol catalysed reactions (OH or OCH_3) versus the low temperature protonation studies ($B(Ar^F)_4^{-}$), thus the latter speices should be viewed as model compounds.

J Am Chem Soc. Author manuscript; available in PMC 2011 April 7.

Findlater et al.

Proposed mechanisms for water-catalyzed dihydrogen cleavage: (a) water as base, and (b) water as acid