1,142 research outputs found

    MeV Neutron Production from Thermal Neutron Capture in {6}^Li Simulated with Geant4

    Full text link
    Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to Îł\gamma-ray production. Unfortunately, the usage of these compounds can also give rise to fast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for 6^6Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.Comment: 6 pages, 3 figures, Proceeding of The Sixth European Conference on Neutron Scattering, Zaragoza Spain, August 30 to September 4 201

    Serum miR-502: A potential biomarker in the diagnosis of concussion in a pilot study of patients with normal structural brain imaging

    Get PDF
    Establishing a diagnosis of concussion within the context of competitive sport is frequently difficult due to the heterogeneity of presentation. Over the years, many endogenous proteins, including the recent Food and Drug Administration approved for mild-to-moderate traumatic brain injury, glial fibrillary acid protein and ubiquitin carboxy-terminal hydrolase, have been studied as potential biomarkers for the diagnosis of mild traumatic brain injury. Recently, a new class of potential biomarkers, the microRNAs, has shown promise as indicators of traumatic brain injury. In this pilot study, we have analysed the ability of pre-validated serum microRNAs (mi-425-5p and miR-502) to diagnose concussion, in cases without structural pathology. Their performance has been assessed alongside a set of identified protein biomarkers for traumatic brain injury in cohort of 41 concussed athletes. Athletes with a confirmed concussion underwent blood sampling after 48 h from concussion along with magnetic resonance imaging. Serum mi-425-5p and miR-502 were analysed by quantitative reverse transcription polymerase chain reaction, and digital immunoassay was used to determine serum concentrations of ubiquitin carboxy-terminal hydrolase, glial fibrillary acid protein, neurofilament light and Tau. Results were matched with 15 healthy volunteers. No structural/haemorrhagic pathology was identified. Protein biomarkers demonstrated variability among groups reflecting previous performance in the literature. Neurofilament light was the only marker to positively correlate with symptoms reported and SCAT5 scores. Despite the sub optimal timing of sampling beyond the optimal window for many of the protein biomarkers measured, miR-502 was significantly downregulated at all time points within a week form concussion ictus, showing a diagnostic sensitivity in cases beyond 48 h and without structural pathology

    Antarctic Climate Change and the Environment

    Get PDF
    The Antarctic climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system. We review these variations from the perspective of the geological and glaciological records and the recent historical period from which we have instrumental data (the last 50 years). We consider their consequences for the biosphere, and show how the latest numerical models project changes into the future, taking into account human actions in the form of the release of greenhouse gases and chlorofluorocarbons into the atmosphere. In doing so, we provide an essential Southern Hemisphere companion to the Arctic Climate Impact Assessment

    A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm

    Get PDF
    The genome of the allotetraploid species Coffea arabica L. was sequenced to assemble independently the two component subgenomes (putatively deriving from C. canephora and C. eugenioides) and to perform a genome-wide analysis of the genetic diversity in cultivated coffee germplasm and in wild populations growing in the center of origin of the species. We assembled a total length of 1.536 Gbp, 444 Mb and 527 Mb of which were assigned to the canephora and eugenioides subgenomes, respectively, and predicted 46,562 gene models, 21,254 and 22,888 of which were assigned to the canephora and to the eugeniodes subgenome, respectively. Through a genome-wide SNP genotyping of 736 C. arabica accessions, we analyzed the genetic diversity in the species and its relationship with geographic distribution and historical records. We observed a weak population structure due to low-frequency derived alleles and highly negative values of Taijma's D, suggesting a recent and severe bottleneck, most likely resulting from a single event of polyploidization, not only for the cultivated germplasm but also for the entire species. This conclusion is strongly supported by forward simulations of mutation accumulation. However, PCA revealed a cline of genetic diversity reflecting a west-to-east geographical distribution from the center of origin in East Africa to the Arabian Peninsula. The extremely low levels of variation observed in the species, as a consequence of the polyploidization event, make the exploitation of diversity within the species for breeding purposes less interesting than in most crop species and stress the need for introgression of new variability from the diploid progenitors

    Barry Unsworth's Morality Play: Narrative, detection, history

    Get PDF
    © 2016 Macmillan Publishers Ltd. Morality Play is a historical detective novel set in the late fourteenth century and published in 1995, at a time of flourishing for historical fiction in Britain. This article argues that the novel shares some of the features of contemporary British historical fiction (notably, a degree of self-referentiality and a concern with the relationship between reality and representation), but also retains more traditional historical novels' desire to show the fate of individuals caught at moments of historical change. Using White's reflections on forms of historical writing and an understanding of the history of detective fiction, the article brings this currently under-examined text to critical attention and, in so doing, contributes to current scholarly understanding of the so-called 'historical turn' in late-twentieth century British fiction

    Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma.

    Get PDF
    The molecular genetic relationship between esophageal adenocarcinoma (EAC) and its precursor lesion, Barrett's esophagus, is poorly understood. Using whole-genome sequencing on 23 paired Barrett's esophagus and EAC samples, together with one in-depth Barrett's esophagus case study sampled over time and space, we have provided the following new insights: (i) Barrett's esophagus is polyclonal and highly mutated even in the absence of dysplasia; (ii) when cancer develops, copy number increases and heterogeneity persists such that the spectrum of mutations often shows surprisingly little overlap between EAC and adjacent Barrett's esophagus; and (iii) despite differences in specific coding mutations, the mutational context suggests a common causative insult underlying these two conditions. From a clinical perspective, the histopathological assessment of dysplasia appears to be a poor reflection of the molecular disarray within the Barrett's epithelium, and a molecular Cytosponge technique overcomes sampling bias and has the capacity to reflect the entire clonal architecture

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    A Flexible Approach for Highly Multiplexed Candidate Gene Targeted Resequencing

    Get PDF
    We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies

    Steps to improve gender diversity in the fields of coastal geosciences and engineering

    Get PDF
    Robust data are the base of effective gender diversity policy. Evidence shows that gender inequality is still pervasive in science, technology, engineering and mathematics (STEM). Coastal geoscience and engineering (CGE) encompasses professionals working on coastal processes, integrating expertise across physics, geomorphology, engineering, planning and management. The article presents novel results of gender inequality and experiences of gender bias in CGE, and proposes practical steps to address it. It analyses the gender representation in 9 societies, 25 journals, and 10 conferences in CGE and establishes that women represent 30% of the international CGE community, yet there is under-representation in prestige roles such as journal editorial board members (15% women) and conference organisers (18% women). The data show that female underrepresentation is less prominent when the path to prestige roles is clearly outlined and candidates can self-nominate or volunteer instead of the traditional invitation-only pathway. By analysing the views of 314 survey respondents (34% male, 65% female, and 1% ‘‘other’’), we show that 81% perceive the lack of female role models as a key hurdle for gender equity, and a significantly larger proportion of females (47%) felt held back in their careers due to their gender in comparison with males (9%). The lack of women in prestige roles and senior positions contributes to 81% of survey respondents perceiving the lack of female role models in CGE as a key hurdle for gender equality. While it is clear that having more women as role models is important, this is not enough to effect change. Here seven practical steps towards achieving gender equity in CGE are presented: (1) Advocate for more women in prestige roles; (2) Promote high-achieving females; (3) Create awareness of gender bias; (4) Speak up; (5) Get better support for return to work; (6) Redefine success; and, (7) Encourage more women to enter the discipline at a young age. Some of these steps can be successfully implemented immediately (steps 1–4), while others need institutional engagement and represent major societal overhauls. In any case, these seven practical steps require actions that can start immediately
    • 

    corecore