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Serum miR-502: A potential biomarker
in the diagnosis of concussion in a
pilot study of patients with normal
structural brain imaging
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Abstract

Establishing a diagnosis of concussion within the context of competitive sport is frequently difficult due to the hetero-

geneity of presentation. Over the years, many endogenous proteins, including the recent Food and Drug Administration

approved for mild-to-moderate traumatic brain injury, glial fibrillary acid protein and ubiquitin carboxy-terminal hydro-

lase, have been studied as potential biomarkers for the diagnosis of mild traumatic brain injury. Recently, a new class of

potential biomarkers, the microRNAs, has shown promise as indicators of traumatic brain injury. In this pilot study, we

have analysed the ability of pre-validated serum microRNAs (mi-425-5p and miR-502) to diagnose concussion, in cases

without structural pathology. Their performance has been assessed alongside a set of identified protein biomarkers for

traumatic brain injury in cohort of 41 concussed athletes. Athletes with a confirmed concussion underwent blood

sampling after 48 h from concussion along with magnetic resonance imaging. Serum mi-425-5p and miR-502 were

analysed by quantitative reverse transcription polymerase chain reaction, and digital immunoassay was used to deter-

mine serum concentrations of ubiquitin carboxy-terminal hydrolase, glial fibrillary acid protein, neurofilament light and

Tau. Results were matched with 15 healthy volunteers. No structural/haemorrhagic pathology was identified. Protein

biomarkers demonstrated variability among groups reflecting previous performance in the literature. Neurofilament light

was the only marker to positively correlate with symptoms reported and SCAT5 scores. Despite the sub optimal timing

of sampling beyond the optimal window for many of the protein biomarkers measured, miR-502 was significantly

downregulated at all time points within a week form concussion ictus, showing a diagnostic sensitivity in cases

beyond 48 h and without structural pathology.
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Introduction

Concussion or mild traumatic brain injury (mTBI) rep-
resents a complex biochemical and physiological
pathology triggered by the absorption of mechanical
forces by the brain.1–5 Understanding the significance
and consequences of mTBI inside and outside of com-
petitive (particularly contact) sport has evolved mark-
edly in recent years. It is now accepted that recurrent or
multiple mTBIs represent a significant risk to the
health of an individual in terms of direct risk to life6,7

and potential long-term neurodegenerative illness.8

1Neurotrauma and Ophthalmology Research Group, Institute of

Inflammation and Ageing, University of Birmingham, Edgbaston,

Birmingham, UK
2National Institute for Health Research Surgical Reconstruction and

Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston,

Birmingham, UK
3School of Sport and Exercise, University of East Anglia, Norwich, UK

Corresponding author:

David Davies, Neurotrauma and Ophthalmology Research Group,

Institute of Inflammation and Ageing, University of Birmingham,

Edgbaston B15 2TT, Birmingham, UK.

Email: D.J.Davies.1@bham.ac.uk

Journal of Concussion

Volume 3: 1–13

! The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/2059700219886190

journals.sagepub.com/home/ccn

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-

NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and

distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.

sagepub.com/en-us/nam/open-access-at-sage).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/237699459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0767-764X
https://orcid.org/0000-0001-7697-2453
mailto:D.J.Davies.1@bham.ac.uk
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/2059700219886190
journals.sagepub.com/home/ccn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F2059700219886190&domain=pdf&date_stamp=2019-11-07


The presentation of mTBI is often subtle, and fre-
quently affected individuals do not meet diagnostic cri-
teria from computerised tomographic scanning (CT) of
the brain.2,9

The vast majority of people who sustain single or
multiple concussions in sports such as rugby, hockey,
soccer, American football, lacrosse and boxing show
no gross anatomical or structural pathology on CT
or magnetic resonance imaging (MRI).10 The diagnosis
or exclusion of concussion is therefore markedly more
complicated than simply determining if an individual
requires a CT scan of the brain to exclude anatomical/
haemorrhagic pathology.

Within sport, the recognition of this has led to the
development and implementation of activity-specific
guidelines11 and research into more effective methods
of diagnosing concussion where its occurrence may not
be clear or forthcoming.

Currently, mainstream assessment of mTBI both in
sports and in the primary/secondary healthcare setting
involves the functional and symptomatic assessment of
an individual using neurocognitive tests such as the
immediate post-concussion assessment and cognitive
testing, King–Devick concussion screening test and
other similar tools.12 These tests have significant limi-
tations, particularly without baseline/premorbid mea-
surement in terms of sensitivity/specificity13,14 and are
also susceptible to multiple confounding factors such as
musculoskeletal injury or pre-morbid disability.

In order to improve objectivity in the diagnosis of
concussion, a number of approaches have been estab-
lished such as multi-modal magnetic resonance imaging
(MRI) featuring diffusion and spectroscopic examina-
tion;10,15–17 however, there are considerable practical
implications with this approach along with a degree
of debate as to the sensitivity of this technology in
excluding injury.15

Circulating biomarkers are also an area of growing
interest, as they have the potential to provide a practi-
cal objective measure of brain injury burden. Recent
FDA approval has been granted to the measurement
of the serum peptides glial fibrillary acid protein
(GFAP) and ubiquitin carboxy-terminal hydrolase
(UCH-L1) for use in mTBI;18,19 specifically, the
approval was regarding the use of negative UCH-L1-
GFAP assay results to rule out intracranial lesions
within 12 h of head injury. GFAP represents a cytoskel-
etal intermediate protein that plays a critical role in the
blood–brain barrier and cell signalling.20 It has been
shown to be highly correlated with TBI; however, it
is not found exclusively in the central nervous system
(CNS),21 and raised levels have been shown not to be
sufficiently specific to confirm or exclude TBI in the
context of polytrauma.22 UCH-L1, however, is a deu-
biquitylating enzyme expressed by neuronal cells

exclusively and has been proposed as a more specific

biomarker of TBI.23,24

Current evidence suggests that these biomarkers are

potentially sensitive enough to exclude significant ana-

tomical injury/brain haemorrhage. This information

mitigates the need for a CT scan19 and potentially pro-

vides quantitative information regarding the size of

injury burden and its prognosis.22 However, it is rea-

sonable to suggest that they have yet to demonstrate

sufficient sensitivity and specificity to positively exclude

mTBI entirely in circumstances when national guidance

does not indicate the requirement for CT imaging,25 or

when structural pathology has been excluded by imag-

ing yet concussion is still suspected.
Beside UCHL1 and GFAP, other circulating pro-

teins have been identified as potential biomarkers of

TBI, and among them, neurofilament light (NF-L)

and Tau protein. NF-L is a CNS-enriched heteropoly-

meric component of the axonal cytoskeleton predomi-

nantly expressed in the long myelinated subcortical

axons.26 In the context of TBI, for example, elevated

levels of NF-L within the CSF of amateur boxers cor-

related strongly with the severity of brain injury sus-

tained during bouts.27,28 Recent publications have also

demonstrated the ability of variations in serum NF-L

concentrations to assess the severity of neuronal

injury following severe TBI if measured between 12

and 144 h.29

Tau is another protein that has demonstrated utility

as a TBI biomarker. It is primarily localized in the

axonal compartment of neurons and is involved in

maintaining the integrity of neuronal micro tubules.

Recently, developed assays were able to identify elevat-

ed Tau concentrations in the plasma of boxers even in

the absence of symptoms of concussion.30 The biody-

namics of plasma Tau in these cases demonstrated a

clear biphasic release between 1 and 36 h31 after TBI.
Serum microRNAs (miRNAs or miRs) are a poten-

tial next generation of biomarkers. They are non-

coding RNA molecules involved in the modulation

and regulation of gene expression,32 and the majority

are intracellular; however, a number are found within

multiple bodily fluids including the blood stream. They

are implemented in a variety of pathologies and have

demonstrated utility as biomarkers in the specific diag-

nosis of mTBI.33–40 Previously, the authors demon-

strated two miRNAs (miR-425-5p and miR-502) that

are significantly downregulated (p< 0.05) in mTBI

patients if compared to healthy volunteers (HV) and

at very early time points.34 For this reason, these bio-

markers were chosen in this study to be validated in a

cohort of professional contact sports athletes who have

sustained a concussive injury without structural trau-

matic pathology as identified by MRI and to be
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compared to the most commonly utilised protein bio-

markers used to help the management of TBI.

Materials and methods

Study approval

Study participants were recruited through the Surgical

Reconstruction and Microbiology Research Centre

(SRMRC), based at Queen Elizabeth Hospital of

Birmingham (UK), as part of the The REpetitive

COncussion in Sport (ReCoS) (Ethics Ref.

11-0429AP28). Written informed consent was received

from participants prior to inclusion in the study.

Recruitment

Professional and semi-professional contact sport ath-

letes aged 16–40 years diagnosed with concussion by

their respective enhanced care settings but not requir-

ing hospital admission were referred to the study via

the SRMRC research on call services. Concussion

would be diagnosed if competing individuals had sus-

tained an impact assessed by the observing clinical

team (attending doctor or qualified physiotherapist,

directly or via video reply) as representing a mTBI

and unsatisfactory performance in sports specific con-

cussion assessment tests (Rugby Football Union Head

Injury Assessment (HIA),41 SCAT-5.42 The HIA

assessment is a nationally adopted HIA protocol

devised by the English rugby football union. It com-

prises a clear three-stage schematic assessment protocol

for cases of suspected concussion for both the adult

and under 19-year-old game.
Specific inclusion criteria were:

1. A diagnosis of concussion confirmed by the observ-

ing sports specific enhanced care team;
2. Documented mechanism of injury;
3. No requirement for immediate assessment or trans-

fer to secondary care;
4. Capacity to give informed consent.

Specific exclusion criteria were:

1. When the severity of injury on assessment indicated

the requirement for a CT scan.
2. A history of neurodegenerative or neoplastic pathol-

ogy including Parkinson’s disease, multiple sclerosis,

hydrocephalus, epilepsy, primary or secondary brain

tumours. But not limited to these conditions.
3. Past cranial neurosurgical procedures, including in-

situ cerebra-spinal fluid diversion devices (shunts).
4. Any contra indication to MRI examination includ-

ing claustrophobia.

5. Any contra indication to venipuncture (blood draw)

including needle phobia.
6. Previous concussion within three months of

presentation.

A target/optimal recruitment window (for assess-

ment) of 48–72 h was initially discussed with all partic-

ipating contact sports institutions; however, these

institutions were not directly involved in the execution

of the study, and research personnel was not in direct

contact at all times with them. Facilities and expertise

in sample acquisition were not available at the respec-

tive clubs, and therefore sampling was undertaken at

first contact with the ReCoS research team-delegated

members of each enhanced care team (club staff) would

contact the research team directly when a recruitable

participant was available.

Imaging

MRI acquisition was performed on either one of the

two dedicated 3 T MR scanners within the SRMRC

institutional complex depending on availability. These

are Philips Achieva 3.0 T (32 channel SENSE coil) and

Siemens Magnetom Skyra 3.0 T (32 channel SENSE

coil). Structural imaging sequences were acquired, spe-

cifically T1-weighted magnetisation prepared rapid gra-

dient echo (base resolution 526 matrix pixels, 176 slice

slab, repetition time 1660ms, echo time 2.4ms, field of

view 240mm) and 2D axial T2-weighted sequences

(base resolution 512 matrix pixels, 27 slice slab, repeti-

tion time 6000ms, echo time 100ms, field of view

250mm). Susceptibility weighted imaging (a sequence

particularly sensitive to blood products within the field

of MR acquisition) was also obtained in order to deter-

mine with a greater degree of sensitivity if any haemor-

rhagic pathology was related to the mTBI (base

resolution 256 matrix pixels, 64 slice slab, repetition

time 27ms, echo time 20ms, field of view 214 mm).

All images underwent specialist radiological review,

for consistency, the same consultant neuro-radiologist

reviewed all the images. These sequences are selected to

provide a realistic analogy to a plain brain CT scan

that would be undertaken in the emergency care situa-

tion (but without the radiation exposure).

Sample collection and processing

Serum samples were obtained anywhere between 2 and

30 days postconcussion ictus. The selection of this time

frame was formulated specifically due to the practical-

ities of recruitment and assessment of participants from

a broad regional network. This extends beyond the

specified window of utility for GFAP and UCH-L1

by the FDA; however, within the secondary care
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environment (e.g. emergency rooms and specialist head

injury clinics), biomarkers that have usefulness beyond

the first 12 h after injury (as blood samples at these

early time points are frequently not available) and out-

side the context of structural pathology (imaging may

frequently be negative) may provide a valuable aid to

diagnosis.
The blood samples were processed for serum isola-

tion within 2 h after they were taken. Whole blood was

left to stand for approximately 30’ at room temperature

before being centrifuged at 3000 r/min for 10’ at 4�C.
Serum was divided into aliquots and stored at –80�C
for different periods before the analysis and ranging

from 0 to 36months.

Simoa Human Neurology 4-plex A assay

The Simoa Human Neurology 4-plex A assay

(Quanterix, Lexington, MA, USA. Product code:

10215), a two-step digital immunoassay,43 was used

to quantitatively determine the levels of UCH-L1,

GFAP, NF-L and Tau, and in serum. Although this

assay allows the measurement of two of the FDA-

approved proteins, this is not the specific assay licenced

by the FDA;18,19 hence the results must be considered

within this context. The sample duplicate measure-

ments were performed on the fully automated Simoa

HD-1 analyser (Quanterix, Lexington, MA, USA) in

the Immunoassay Biomarker Core Laboratory,

University of Dundee. This is a magnetic bead-based

digital ELISA that allows detection of proteins at sub-

femtomolar concentrations.44 For UCH-L1, GFAP,

NF-L and Tau assay, the lower limit of quantification

was 0.467, 0.241, 0.053 and 5.450 pg/ml, respectively,

and the lower limit of detection (LLOD) was 0.221,

0.104, 0.024 and 1.740 pg/ml, respectively. Any samples

yielding a signal over the quantification or calibrator

range were diluted and re-assayed. Any samples yield-

ing a signal below the LLOD were excluded from the

analysis. Number of samples assessed for each assay is

reported in Table 2. Average intra-assay duplicate coef-

ficient of variation for the samples was 25.3, 5.3, 13.5

and 16.8 for UCH-L1, GFAP, NF-L and Tau,

respectively.

RNA isolation and miRNA analysis

MiRNAs were extracted from 400 ll of serum samples

by using Qiagen miRNeasy mini kit (Qiagen, GmbH,

Hilden, Germany), according to Qiagen supplementary

protocol for purification of small RNAs from serum

and plasma and finally eluted in 30 ll volume of

RNase free water. The concentration and purity of

the resulting RNA were determined with an ND-1000

UV–vis spectrophotometer (NanoDrop). Serum RNAs

(20 ng) were retrotranscribed and pre-amplified, using
the single TaqMan assay (AppliedBiosystems, Life
TechnologiesTM) according to the manufacturer’s
instructions, and RT-qPCR analysis was performed
in a Bio-Rad iQ5 real-time PCR detection system
(Bio-Rad, CA, USA). Expression fold changes were cal-
culated according to the conventional 22DDCT method
previously described by Livak and Schmittgen45 and by
using miR-331 and miR-223* as reference genes. These
miRNAs were found to be among the most stable miRs
in a previous similar study by applying two different
methods: DataAssistv.3 software (AppliedBiosystem
Life TechnologiesTM) and geNorm Algorithm (http://
medgen.ugent.be).34

Statistical analysis

The data was checked for normal distribution charac-
teristics and transformed into natural logarithm to per-
form parametric tests. Comparisons across the groups
at each time and within the groups over time were
performed by the one-way analysis of variance and
Tukey’s post-hoc test on transformed data.

In addition, a receiver operating characteristic
(ROC) analysis was employed. This is a statistical
method to assess the diagnostic accuracy of each bio-
marker at specific time points in diagnosing concus-
sion, expressed as area under the curve (AUC). The
ROC curve is a graphical display of the trade-offs of
the true-positive rate (sensitivity) and false-positive rate
(1-specificity) corresponding to all possible binary tests
that can be formed from this continuous biomarker.
Each classification rule, or cut-off level, generates a
point on the graph. The closer the curve follows the
left-hand border and then the top-border of the ROC
space, the more accurate the test.46

Pearson correlations were also analysed between the
levels of biomarkers and SCAT5 scores and symptoms.
All analyses were carried on SPSS v.22 (IBM).

Results

Samples recruitment

A total of 41 (40M/1F) concussed athletes were
recruited for this study. Serum was collected at a vari-
ety of time points from concussion. In particular,
serum was collected at day 2, day 3, days 4–7 and
days 8–30 from concussion in a total of 9, 14, 10 and
8 injured athletes, respectively. All patients were symp-
tomatic at the time of assessment. Serum samples were
also collected from a total of 15 age-matched HV. The
demographic information regarding both populations
and mechanism of injury is summarised below (Table 1,
Panel A and Panel B). The vast majority (n¼ 38) of
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players referred were rugby players; however, a number

of other sports were represented (soccer n¼ 2, ice

hockey n¼ 1).

Imaging

All participants underwent MRI scanning, and no

traumatic structural pathology was reported. SWI

imaging did not highlight an evidence of haemorrhagic

pathology. One individual was found to have sustained

an Anderson–Alonzo type 1 odontoid peg (C2) frac-

ture; however, no accompanying intra cranial patholo-

gy was identified, and appropriate fat suppression

images were not obtained at the time to determine frac-

ture age and relationship to the concussive event (this

case was referred to local tertiary services for further

management and data retained for the study). All

heathy individuals underwent identical imaging proto-

cols and no evidence of any traumatic/haemorrhagic

pathology. One individual was found to have a small

incidental cavernous haemangioma, and data from this

individual was retained as this was accepted by the

authors to represent a true random incidental factor

reflective of any normally sampled population.

UCH-L1, GFAP, NF-L and Tau

UCH-L1, GFAP, NF-L and Tau and concentrations

were measured in serum of 41 concussed athletes and

compared to 15 HV. The levels of these proteins did

not show significant variations among the groups and

at different time points. Median and interquartile

ranges are reported in Table 2.

MiR-425-5p and miR-502 expression

The expression level of miR-425-5p and miR-502 was

measured by RT-qPCR in concussed athletes and again

compared to 15 HV. Specifically, miR-502 showed a

significant downregulation at day 2 (p¼ 0.002), day 3

(p¼ 0.018) and day 4–7 (p¼ 0.025) when compared to

HV (Figure 1). MiR-425-5p did not show any signifi-

cant results among the time points and compared to

the HVs.

ROC analysis

AUCs for these biomarkers at specific time points are

also reported in Table 3. In particular, miR-502

showed greater accuracy (>0.80) compared to the

other biomarkers analysed within a week from concus-

sion in patients presenting symptoms at the time of

assessment.

Pearson correlations

Correlative relationships between serum biomarkers

and a number of SCAT5 sub section scores are

Table 1. (a) Summary of participants, (b) Mechanism of injury sustained.

(a)

HV Day 2 Day 3 Days 4–7 Days 8–30

N 15 9 14 10 8

M/F 13/2 9/0 14/0 9/1 8/0

Mean age (range) 25.1 (18.2–36.2) 23.9 (18.6–31.2) 28.4 (24.2–34.2y) 26.6 (19.7–36.2) 25.4 (19.4–31.9)

Mean years of education (range) 14.25 (11–16) 14 (14–16) 14.7 (11–17) 13.7 (11–16) 13.5 (11–16)

Mean total presentation

SCAT symptom score (range)

14.5 (0–39) 4.07 (0–25) 7.4 (1–21) 5 (0–23)

Mean number of career

concussions (range)

3.85 (1–8) 2.92 (0–6) 3.63 (0–10) 2.66 (2–4)

Mean years of participation (range) 5.28 (1–10) 5.42 (1–16) 6.75 (1–18) 8.42 (5–12)

(b)

Direct head contacta 5 9 6 3

Loss of consciousness 2 5 4 2

Post traumatic amnesia 1 3 6 2

Indirect contactb 4 4 2 4

Hard surface/object contactc 0 2 0 0

Mechanism uncertain 0 0 2 1

aHead of concussed player sustained contact with limb or trunk of other player.
bHeavy tackle or diffused contact/fall sustained without clear history of head contact.
cPost, stick or floor contact with head.
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presented in Table 4. Here, we see that NF-L is the only
marker with a statistically significant correlation with
two of the SCAT5 sub sections (number of symptoms
and balance) at day 2. No correlation was observed at
later time points.

Symptoms were also correlated with levels of bio-
markers analysed at all time points and presented in
Table 5. Thirteen different symptoms correlated with
NF-L at days 2 and 3 with GFAP at the same time
point.

Figure 1. Boxplots of the fold changes of miR-502 at different time points and compared to HV. Specifically, miR-502 showed a
significant downregulation at day 2 (p¼ 0.002), day 3 (p¼ 0.018) and day 4–7 (p¼ 0.025) when compared to HV.

Table 2. Descriptive statistics.

UCH-L1 GFAP NF-L Tau miR-425-5p miR-502

HV

N 13 14 14 14 14 13

Median 4.8473 53.8100 4.7409 1.0393 1.4240 .9400

Minimum .07 29.79 3.00 .13 .01 .05

Maximum 96.46 108.41 8.13 2.28 16.55 14.13

Day 2

N 8 9 9 9 9 8

Median 13.8221 72.7322 4.8598 .5351 .1538 .0489

Minimum 3.89 1.61 3.29 .13 .06 .01

Maximum 35.78 100.37 13.71 1.81 .49 .19

Day 3

N 14 14 14 14 12 12

Median 24.5814 67.6626 7.1334 .6046 .4887 .0646

Minimum .56 30.47 4.30 .18 .05 .02

Maximum 81.62 93.85 17.38 2.02 2.83 5.94

Days 4–7

N 7 10 10 10 9 10

Median 6.2244 51.5501 7.6504 .7186 .2413 .0530

Minimum 2.43 30.22 3.80 .39 .08 .02

Maximum 12.64 85.99 45.71 4.85 3.77 8.34

Days 8–30

N 6 8 8 8 8 7

Median 8.6703 58.3463 6.2404 .7864 .6903 .0837

Minimum 1.21 31.74 4.09 .05 .08 .04

Maximum 20.50 88.78 35.89 2.19 5.65 8.34
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Five of the 13 symptoms were still reported at day 3;

2 at days 4–7 and they correlate with statistical signif-

icance to NF-L. No correlation between symptoms and

biomarkers was detected at 8–30 days.
Note. Significant correlations are in Bold

Discussion

Various proteomics studies have been undertaken in

both animal models and clinical studies to identify

potential TBI-specific biomarkers31,47,48 and to deter-

mine the distinct pathophysiological conditions follow-

ing TBI. In particular, two serum biomarkers, GFAP

and UCH-L1, were approved by the FDA in February

2018 as a blood test for use within the context of mTBI

within the first 12 h post injury. As previously dis-

cussed, both biomarkers are detectable in serum

within 1 h and are reported as being able to distinguish

between mTBI patients with structural pathology and

those without,23,49,50 in both children and adults.51

Therefore, the intended use is to exclude or confirm

the requirement for axial imaging where there is equi-

poise or uncertainty as to the requirement. This inves-

tigation does not constitute a direct comparison of any

biomarker within the licensed confines of the FDA

approval for GFAP and UCH-L1; moreover, it repre-

sents a comparison of performance within a secondary

care (later) setting and certainly represents a new clin-

ical context for the use.
A time course profile of these two biomarkers was

described in mild-to-moderate TBI (MMTBI), showing

a peak of GFAP level at 20 h after injury, and a steady

decrease over 72 h. However, this protein was still

detectable at 7 days. In contrast, UCH-L1 increased

more rapidly after injury than GFAP, reaching a peak

at 8 h and decreasing steadily over the following 48h.50

Our results showed no significant difference in

GFAP concentration between the groups analysed,

Table 3. AUC and confidence interval for the serum proteins and miRNAs analysed at different time points and number of subjects
per analysis (N), HV versus concussed athletes (C).

Test result variable(s) N (HV/C) Area Std. Errora Asymptotic Sig.b

Asymptotic 95% confidence

interval

Lower bound Upper bound

AUC Day 2

UCH-L1 13/8 .779 .105 .036 .573 985

GFAP 14/9 .659 .126 .208 .412 .905

NF-L 14/9 .500 .126 1.000 .253 .747

Tau 14/9 .627 .121 .313 .389 .865

miR-425-5p 14/9 .802 .096 .017 .614 .989

miR-502 13/8 .933 .052 .001 .830 1.000

AUC Day 3

UCH-L1 13/14 .698 .105 .081 .492 904

GFAP 14/14 .658 .105 .154 .451 .865

NF-L 14/14 .755 .091 .022 .576 .934

Tau 14/14 .689 .111 .089 .470 .907

miR-425-5p 14/12 .673 .109 .136 .459 .887

miR-502 14/12 .840 .083 .004 .677 1.000

AUC Days 4–7

UCH-L1 13/7 .127 .426 .357 .855

GFAP 14/10 .124 .907 .272 .757

NF-L 14/10 .114 .061 .506 .951

Tau 14/10 .132 .598 .306 .823

miR-425-5p 14/9 .111 .143 .461 .896

miR-502 14/10 .096 .006 .651 1.000

AUC Days 8–30

UCH-L1 13/6 .138 .539 .319 .861

GFAP 14/8 .131 .633 .307 .818

NF-L 14/8 .109 .056 .536 .964

Tau 14/8 .134 .539 .318 .843

miR-425-5p 14/8 .124 .494 .346 .832

miR-502 14/7 .150 .219 .377 .964

aUnder the nonparametric assumption.
bNull hypothesis: true area¼ 0.5.
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Table 4. Person correlations between biomarkers and SCAT5 scores.

Day 2 UCH-L1 GFAP NF-L Tau miR-425-5p miR-502

SCAT 5 number of symptoms

Pearson correlation .014 .349 .614a –.142 –.218 –.228

Sig. (two-tailed) .950 .103 .002 .518 .317 .320

N 21 23 23 23 23 21

SCAT 5 balance

Pearson correlation �.024 .310 .560a –.0084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

aCorrelation is significant at the 0.01 level (two-tailed).

Note. Significant correlations are in Bold.

Table 5. Pearson correlation of SCAT 5 symptom scores versus serum biomarkers.

UCH-L1 GFAP NF-L Tau miR-425-5p miR-502

Day 2

Vomiting

Pearson correlation –.024 .295 .819a –.250 –.099 –.110

Sig. (two-tailed) .917 .172 .000 .249 .653 .635

N 21 23 23 23 23 21

Visual problem

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Fatigue

Pearson correlation –.024 .475b .475b –.032 –.194 –.205

Sig. (two-tailed) .918 .022 .022 .886 .376 .374

N 21 23 23 23 23 21

Slowdown

Pearson correlation –.024 .295 .819a –.250 –.099 –.110

Sig. (two-tailed) .917 .172 .000 .249 .653 .635

N 21 23 23 23 23 21

Drowsiness

Pearson correlation –.024 .471b .600a –.135 –.152 –.158

Sig. (two-tailed) .918 .023 .002 .539 .489 .495

N 21 23 23 23 23 21

Dizziness

Pearson correlation –.039 .508b .362 –.118 –.224 –.247

Sig. (two-tailed) .868 .013 .090 .591 .304 .281

N 21 23 23 23 23 21

Concentration

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Sensitivity to noise

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Irritability

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

(continued)
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Table 5. Continued.

UCH-L1 GFAP NF-L Tau miR-425-5p miR-502

Foggy

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Trouble falling asleep

Pearson correlation .115 .350 .457b –.166 –.233 –.247

Sig. (two-tailed) .618 .102 .028 .448 .286 .281

N 21 23 23 23 23 21

Sleepless

Pearson correlation .144 .116 .639a –.367 –.153 –.166

Sig. (two-tailed) .534 .599 .001 .085 .486 .473

N 21 23 23 23 23 21

Numbness

Pearson correlation –.024 .295 .819a –.250 –.099 –.110

Sig. (two-tailed) .917 .172 .000 .249 .653 .635

N 21 23 23 23 23 21

Memory

Pearson correlation –.024 .310 .560a –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Nausea

Pearson correlation –.024 .310 .560b –.084 –.151 –.166

Sig. (two-tailed) .917 .149 .005 .704 .491 .472

N 21 23 23 23 23 21

Day 3

Slowdown

Pearson correlation –.004 .235 .396b –.104 –.116 –.197

Sig. (two-tailed) .982 .230 .037 .600 .571 .346

N 27 28 28 28 26 25

Drowsiness

Pearson correlation .314 .128 .466b –.128 –.120 –.171

Sig. (two-tailed) .110 .517 .013 .517 .559 .412

N 27 28 28 28 26 25

Headache

Pearson correlation .186 .132 .392b –.245 –.172 –.256

Sig. (two-tailed) .353 .502 .039 .209 .400 .218

N 27 28 28 28 26 25

Concentration

Pearson correlation .054 .135 .377b –.108 –.062 –.155

Sig. (two-tailed) .787 .494 .048 .585 .765 .460

N 27 28 28 28 26 25

Foggy

Pearson correlation –.078 .136 .431b –.174 –.150 –.226

Sig. (two-tailed) .699 .489 .022 .377 .463 .277

N 27 28 28 28 26 25

Trouble falling asleep

Pearson correlation .234 .228 .646a –.173 –.093 –.112

Sig. (two-tailed) .240 .243 .000 .378 .652 .595

N 27 28 28 28 26 25

Days 4–7

Slowdown

Pearson correlation –.037 –.110 .389b –.176 –.184 –.188

Sig. (two-tailed) .854 .550 .028 .335 .323 .321

N 27 32 32 32 31 30

(continued)
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although a modest increase can be detected at days 2
and 3 as shown in Table 2. The same can be stated for
UCH-L1, where a pick is present at day 2. This is con-
sistent with the previously reported performance of
these markers in the subject literature.

Tau peptide has been described as showing a peak in
detectable serum levels within the first 36 h after injury;
however, we did not observe this. NF-L showed a
modest increase between days 4–7, again consistent
with the current literature in that NF-L has better reso-
lution of injury at later time points. However, the
observed concentrations and their accompanying signif-
icance may have been different should earlier sampling
had taken place. This should be considered carefully and
form the basis of future comparative investigations.

In recent years, the miRNAs have emerged as the
potential next generation of biomarkers for many con-
ditions including neurodegenerative diseases such as
Parkinson’s and Alzheimer’s disease.52,53 This fortifies
and inspires ongoing efforts to investigate their poten-
tial utility in concussion diagnosis and management. It
also serves as a reminder as to the vast amount of work
that lies ahead to fully understand their complex roles
relationship with the physiological function and path-
ological processes of the CNS.

MiRs have many advantages over protein-based
markers. For instance, miRNAs are stable in various
bodily fluids,54 the sequences of most miRNAs are con-
served among different species,55 expression is tissue/
fluid specific and levels can be easily assessed by RT-
qPCR, which allows for signal amplification.
Additionally, protein-based biomarkers may have dif-
ferent post-translational modifications which can affect
the accuracy of measurement.

In this study, we analysed the expression of two
miRNAs (miR-425-5p and miR502) which were previ-
ously selected and described as candidate biomarkers
of mild TBI at very early time points.34 Previously, our
group demonstrated a significant downregulation of
both miRs in a cohort of 30 mTBI patients within 1 h
of injury. The downregulation expression of these two
biomarkers is confirmed in this new cohort. As shown
in Figure 1, miR-502 fold changes (a conventional

method to measure the differentially expressed genes

by RT-qPCR) remain significantly downregulated, if

blood samples were collected at 2, 3 or 4–7 days from

concussion and if compared to HV. In addition, it

showed a robust sensitivity and specificity as demon-

strated by the AUC, particularly at day 2 (Table 3).

Therefore, miR-502 has potentially demonstrated the

ability to independently discriminate concussed ath-

letes without structural brain injury from HV within

a time frame of seven days.
However, neither of the miRs correlate with SCAT5

scores or symptoms reported. NF-L, is the only biomark-

er analysed, showing a significant correlation with 13 of

the symptoms reported and SCAT5 scores (number of

symptoms and balance) at day 2, confirming its particular

utility in the management of concussion. Understanding

the temporal profile of a candidate biomarker is crucial

and requires rigour and the appropriate timing of mea-

surement. This represents a challenge with regard to

obtaining samples in a timely fashion from patients with

less severe injury, as they often do not present to second-

ary care and frequently have an inconsistent pattern of

post injury activity. A biomarker that remains stable for

a temporal window of at least a week has a significant

practical and clinical advantage over those with much

shorted windows (that rise/fall rapidly after injury and

reverse over 48h). Moreover, miR-502 has the potential

to improve the sensitivity in a population in which struc-

tural TBI has been excluded, which is more reflective of

the sports concussion secondary care (clinic) context,

where in reality, the need for a CT scan of the brain

does not represent the true diagnostic dilemma.9,10,56

However, while this data is promising, the authors

recognise that there are significant limitations to the

observations made. This work was undertaken in a

small heterogenous cohort of patients and therefore can

be considered as a pilot study only. Patients were enrolled

within a broad sampling tie window from 2 to 30days.

This approach may well capture differing peaks and

troughs in the natural metabolism of a given molecule;

therefore, this may have a significant effect on the per-

formance of any given marker. In addition, long-term

Table 5. Continued.

UCH-L1 GFAP NF-L Tau miR-425-5p miR-502

Concentration

Pearson correlation –.037 –.095 .388b –.220 –.212 –.223

Sig. (two-tailed) .854 .604 .028 .227 .252 .235

N 27 32 32 32 31 30

aCorrelation is significant at the 0.01 level (two-tailed).
bCorrelation is significant at the 0.05 level (two-tailed).

Note: Significant correlations are in Bold.
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outcome data including return to play data and chronic
symptomatology in these patients were not collected.

Again, the sample size of this investigation is clearly
a significant limitation against making any kind of
definitive deduction. However, within the current
research framework, the resources available at the
time to the research team and the wide geographical
area of recruitment, we feel that this serves as a very
useful hypothesis forming pilot investigation. The clear
heterogeneity in this sample size potentially could
introduce a degree of selection bias to any conclusions
drawn. The principle reasons for this are the pragmatic
nature of the original investigation, with referrals open
from all high-level contact sports (multiple sports) per-
sons from within the region. Consideration was given
to streamlining the inclusion criteria to improve subject
matching within the cohort; however, it was felt that
this may limit recruitment and, from this, create a data
set that was too small to be useful. However, a positive
aspect of the sample population is the professional and
semi-professional nature of all the participants. This
infers a consistent level of performance, athletic ability,
schedule of training and the intensity of participant.

As declared in the methods session, sampling was
undertaken at first contact with the research team
resulting in the broad window of acquisition. The prac-
ticality and logistics of presentation to research facili-
ties led to this sub optimal situation. As a pragmatic
investigation (although all patients’ assessed presented
symptoms of concussion), this was a calculated limita-
tion accepted by the team to allow progress of the study
within a reasonable time frame. Future investigations
should potentially involve local blood draw/sampling
at specified and precise time frame. The Quanterix
assay used in this investigation as mentioned is not
the exact same in the FDA approval; however, this
assay has been previously used in investigations into
concussion.57,58

As a continuation of the pragmatic design, trial-
specific criteria for the diagnosis of a concussion for
the study were not proscribed in advance to participat-
ing clubs; instead, essential qualification criteria for
inclusion were requested. This is a significant limitation
and does open up the possibility of an unacceptable
heterogeneity in diagnostic thresholds. Sports specific
concussion diagnostic criteria were employed. Criteria
used by the clubs that own enhanced care team (doctor
or suitably trained clinical professional) were utilised
(the pitch side clinicians made the initial diagnosis);
however, the essential qualifiers were (i) clinical suspi-
cion of concussion by the enhanced care team and (ii)
assessment and failure to pass the RFU HIA assess-
ment or SCAT-5 concussion assessment tests at first
assessment. It should be noted that the utility of all
of the markers considered is only as good at detecting

a concussive event as the clinical diagnostic criteria,

and the identification of a true concussive ictus is

sub-optimally assessed in this investigation.
Finally, both miRNA-425-5p and miRNA-502 have

been implicated in the modulation of pathology in a

number of extra cranial diseases.59–62 Their potential

involvement in such a diverse set of pathologies cer-

tainly opens the possibility that numerous other factors

may influence levels of expression, and in as yet unfore-

seeable circumstances influence their ability as effective

biomarkers of concussion diagnosis. This must be con-

sidered as a further limitation in the deductions made

by the authors. Future work will focus on developing a

more robust mechanistic hypothesis together with fur-

ther validating the value of these miRNAs as bio-

markers of concussion.
In conclusion, miR-502 has shown the potential to

expand the window of effective sensitivity to injury,

resulting particularly useful for application within the

secondary care or specialist clinic setting where sam-

pling immediately after injury is not readily available.

However, significant confirmatory work is required due

to a number of significant limitations in this study.
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