1,236 research outputs found
Coagulation at the blood-electrode interface: the role of electrochemical desorption and degradation of fibrinogen
The influence of electrochemistry on the coagulation of blood on metal surfaces was demonstrated several decades ago. In particular, the application of cathodic currents resulted in reduced surface thrombogenicity, but no molecular mechanism has been so far proposed to explain this observation. In this article we used for the first time the quartz crystal microbalance with dissipation monitoring technique coupled with an electrochemical setup (EQCM-D) to study thrombosis at the blood-electrode interface. We confirmed the reduced thrombus deposition at the cathode, and we subsequently studied the effect of cathodic currents on adsorbed fibrinogen (Fg). Using EQCM and mass spectrometry, we found that upon applying currents Fg desorbed from the electrode and was electrochemically degraded. In particular, we show that the flexible N-terminus of the α-chain, containing an important polymerization site, was cleaved from the protein, thus affecting its clottability. Our work proposes a molecular mechanism that at least partially explains how cathodic currents reduce thrombosis at the blood-electrode interface and is a relevant contribution to the rational development of medical devices with reduced thrombus formation on their surface
Inclusion of Premenopausal Women in Breast Cancer Clinical Trials
BACKGROUND: Patients with premenopausal breast cancer (PMBC) have been historically excluded from some clinical trials because of the limitations of using endocrine therapy (ET) in this population. We analyzed breast cancer randomized clinical trials (RCTs) to determine the rates of and factors associated with inclusion of PMBC patients to provide a benchmark for PMBC inclusion in RCTs moving forward.
METHODS: Using ClinicalTrials.Gov, we identified breast cancer phase III RCTs and extracted inclusion criteria and patient enrollment information. Multiple binary logistic regression modeling was used to assess trial-related factors that were associated with PMBC patient inclusion.
RESULTS: Of 170 breast cancer RCTs identified, 131 (77.1%) included PMBC patients. Sixty-five (38.2%) trials analyzed patients with hormone-receptor-positive (HR+) and HER2-negative (HER2-) breast cancer, of which 31 (47.7%) allowed for enrollment of PMBC patients. Lower rates of PMBC inclusion were seen in trials that studied HR+/HER2-patients (47.7% PMBC inclusion in HR+/HER2-trials vs. 94.3% in non-HR+/HER2-trials, aOR 0.07 [95% CI: 0.02-0.19], p \u3c 0.001) and in trials that randomized or mandated ET (44.4% in ET trials vs. 83.2% in non-ET trials, aOR 0.21 [95% CI: 0.10-0.83], p = 0.02). Trials studying chemotherapy (CT) were associated with inclusion of PMBC patients (100% in CT trials vs. 70.5% in non-CT trials, a OR 14.02 [95% CI: 1.54-127.91], p = 0.01). All surgical and radiation therapy clinical trials allowed for the inclusion of PMBC patients in their eligibility criteria.
CONCLUSIONS: Breast cancer clinical trials should carefully select their enrollment criteria and consider inclusion of premenopausal patients when appropriate
Prospective, Early Longitudinal Assessment of Lymphedema-Related Quality of Life Among Patients With Locally Advanced Breast Cancer: The Foundation for Building a Patient-Centered Screening Program
BACKGROUND: We examined how breast cancer-related lymphedema (BCRL) affects health-related quality of life (HRQOL), productivity, and compliance with therapeutic interventions to guide structuring BCRL screening programs.
METHODS: We prospectively followed consecutive breast cancer patients who underwent axillary lymph node dissection (ALND) with arm volume screening and measures assessing patient-reported health-related quality of life (HRQOL) and perceptions of BCRL care. Comparisons by BCRL status were made with Mann-Whitney U, Chi-square, Fisher\u27s exact, or t tests. Trends over time from ALND were assessed with linear mixed-effects models.
RESULTS: With a median follow-up of 8 months in 247 patients, 46% self-reported ever having BCRL, a proportion that increased over time. About 73% reported fear of BCRL, which was stable over time. Further in time from ALND, patients were more likely to report that BCRL screening reduced fear. Patient-reported BCRL was associated with higher soft tissue sensation intensity, biobehavioral, and resource concerns, absenteeism, and work/activity impairment. Objectively measured BCRL had fewer associations with outcomes. Most patients reported performing prevention exercises, but compliance decreased over time; patient-reported BCRL was not associated with exercise frequency. Fear of BCRL was positively associated with performing prevention exercises and using compressive garments.
CONCLUSIONS: Both incidence and fear of BCRL were high after ALND for breast cancer. Fear was associated with improved therapeutic compliance, but compliance decreased over time. Patient-reported BCRL was more strongly associated with worse HRQOL and productivity than was objective BCRL. Screening programs must support patients\u27 psychological needs and aim to sustain long-term compliance with recommended interventions
Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.
BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research
The Mice at play in the CALIFA survey: A case study of a gas-rich major merger between first passage and coalescence
We present optical integral field spectroscopy (IFS) observations of the
Mice, a major merger between two massive (>10^11Msol) gas-rich spirals NGC4676A
and B, observed between first passage and final coalescence. The spectra
provide stellar and gas kinematics, ionised gas properties and stellar
population diagnostics, over the full optical extent of both galaxies. The Mice
provide a perfect case study highlighting the importance of IFS data for
improving our understanding of local galaxies. The impact of first passage on
the kinematics of the stars and gas has been significant, with strong bars
likely induced in both galaxies. The barred spiral NGC4676B exhibits a strong
twist in both its stellar and ionised gas disk. On the other hand, the impact
of the merger on the stellar populations has been minimal thus far: star
formation induced by the recent close passage has not contributed significantly
to the global star formation rate or stellar mass of the galaxies. Both
galaxies show bicones of high ionisation gas extending along their minor axes.
In NGC4676A the high gas velocity dispersion and Seyfert-like line ratios at
large scaleheight indicate a powerful outflow. Fast shocks extend to ~6.6kpc
above the disk plane. The measured ram pressure and mass outflow rate
(~8-20Msol/yr) are similar to superwinds from local ULIRGs, although NGC4676A
has only a moderate infrared luminosity of 3x10^10Lsol. Energy beyond that
provided by the mechanical energy of the starburst appears to be required to
drive the outflow. We compare the observations to mock kinematic and stellar
population maps from a merger simulation. The models show little enhancement in
star formation during and following first passage, in agreement with the
observations. We highlight areas where IFS data could help further constrain
the models.Comment: 23 pages, 13 figures, accepted to A&A. A version with a complete set
of high resolution figures is available here:
http://www-star.st-and.ac.uk/~vw8/resources/mice_v8_astroph.pd
Variability and quasi-decadal changes in the methane budget overthe period 2000–2012
Following the recent Global Carbon Project (GCP)
synthesis of the decadal methane (CH4/ budget over 2000–
2012 (Saunois et al., 2016), we analyse here the same dataset
with a focus on quasi-decadal and inter-annual variability in
CH4 emissions. The GCP dataset integrates results from topdown
studies (exploiting atmospheric observations within an
atmospheric inverse-modelling framework) and bottom-up
models (including process-based models for estimating land
surface emissions and atmospheric chemistry), inventories of
anthropogenic emissions, and data-driven approaches.The annual global methane emissions from top-down studies,
which by construction match the observed methane
growth rate within their uncertainties, all show an increase in
total methane emissions over the period 2000–2012, but this
increase is not linear over the 13 years. Despite differences
between individual studies, the mean emission anomaly of the top-down ensemble shows no significant trend in total
methane emissions over the period 2000–2006, during
the plateau of atmospheric methane mole fractions, and also
over the period 2008–2012, during the renewed atmospheric
methane increase. However, the top-down ensemble mean
produces an emission shift between 2006 and 2008, leading
to 22 [16–32] Tg CH4 yr1 higher methane emissions
over the period 2008–2012 compared to 2002–2006. This
emission increase mostly originated from the tropics, with
a smaller contribution from mid-latitudes and no significant
change from boreal regions.
The regional contributions remain uncertain in top-down
studies. Tropical South America and South and East Asia
seem to contribute the most to the emission increase in the
tropics. However, these two regions have only limited atmospheric
measurements and remain therefore poorly constrained.
The sectorial partitioning of this emission increase between
the periods 2002–2006 and 2008–2012 differs from
one atmospheric inversion study to another. However, all topdown
studies suggest smaller changes in fossil fuel emissions
(from oil, gas, and coal industries) compared to the
mean of the bottom-up inventories included in this study.
This difference is partly driven by a smaller emission change
in China from the top-down studies compared to the estimate
in the Emission Database for Global Atmospheric Research
(EDGARv4.2) inventory, which should be revised to smaller
values in a near future. We apply isotopic signatures to the
emission changes estimated for individual studies based on
five emission sectors and find that for six individual top-down
studies (out of eight) the average isotopic signature of the
emission changes is not consistent with the observed change
in atmospheric 13CH4. However, the partitioning in emission
change derived from the ensemble mean is consistent with
this isotopic constraint. At the global scale, the top-down ensemble
mean suggests that the dominant contribution to the
resumed atmospheric CH4 growth after 2006 comes from microbial
sources (more from agriculture and waste sectors than
from natural wetlands), with an uncertain but smaller contribution
from fossil CH4 emissions. In addition, a decrease in
biomass burning emissions (in agreement with the biomass
burning emission databases) makes the balance of sources
consistent with atmospheric 13CH4 observations.
In most of the top-down studies included here, OH concentrations
are considered constant over the years (seasonal variations
but without any inter-annual variability). As a result,
the methane loss (in particular through OH oxidation) varies
mainly through the change in methane concentrations and not
its oxidants. For these reasons, changes in the methane loss
could not be properly investigated in this study, although it
may play a significant role in the recent atmospheric methane
changes as briefly discussed at the end of the paper.Published11135–111616A. Geochimica per l'ambienteJCR Journa
The global methane budget 2000–2017
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations).
For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters.
Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
Global assessment of marine plastic exposure risk for oceanic birds
Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species
- …