763 research outputs found

    Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

    Get PDF
    We study dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on Herschel-ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that Aλ/AVA_{\lambda}/A_V attenuation curves exhibit a very wide range of slopes that are on average as steep as the SMC curve slope. The slope is a strong function of optical opacity. Opaque galaxies have shallower curves - in agreement with recent radiate transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies having shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to MW-like; with an average strength 1/3 of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be to first order ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs and quiescent galaxies. We release the catalog of associated SFRs and stellar masses (GSWLC-2).Comment: Accepted to ApJ. GSWLC-2 catalog of SED+LIR SFRs and M* to be released Jun 1 at http://pages.iu.edu/~salims/gswlc

    DustKING, the story continues : dust attenuation in NGC 628

    Get PDF
    Dust attenuation is a crucial but highly uncertain parameter that hampers the determination of in- trinsic galaxy properties, such as stellar masses, star formation rates and star formation histories. The shape of the dust attenuation law is not expected to be uniform between galaxies, nor within a galaxy. Our DustKING project was introduced at the first BINA workshop in 2016 and aims to study the variations of dust attenuation curves in nearby galaxies. At the second BINA workshop in 2018, I presented the results of our pilot study for the spiral galaxy NGC 628. We find that the average attenuation law of this galaxy is characterised by a MW-like bump and a steep UV slope. Furthermore, we observe intriguing variations within the galaxy, with regions of high AV exhibiting a shallower attenuation curve. Finally, we discuss how our work might benefit from data taken with the UVIT from the Indian AstroSat mission

    DustKING - the story continues: dust attenuation in NGC628

    Get PDF
    Dust attenuation is a crucial but highly uncertain parameter that hampers the determination of intrinsic galaxy properties, such as stellar masses, star formation rates and star formation histories. The shape of the dust attenuation law is not expected to be uniform between galaxies, nor within a galaxy. Our DustKING project was introduced at the first BINA workshop in 2016 and aims to study the variations of dust attenuation curves in nearby galaxies. At the second BINA workshop in 2018, I presented the results of our pilot study for the spiral galaxy NGC628. We find that the average attenuation law of this galaxy is characterised by a MW-like bump and a steep UV slope. Furthermore, we observe intriguing variations within the galaxy, with regions of high AVA_V exhibiting a shallower attenuation curve. Finally, we discuss how our work might benefit from data taken with the UVIT from the Indian AstroSat mission.Comment: 8 pages, 6 figures, Proceedings paper of the second Belgo-Indian Network for Astronomy & astrophysics (BINA) workshop, accepted for publication in the Bulletin de la Soci\'et\'e Royale des Sciences de Li\`eg

    Intergalactic Star Formation

    Get PDF
    Star formation in interacting systems may take place in various locations, from the dust--enshrouded core of Ultraluminous Infrared Galaxies to more unusual places such as the debris of colliding galaxies expelled into the intergalactic medium. Determining whether star-formation proceeds in the latter environment, far from the parent galaxies, in a similar way as in spiral disks has motivated the multi--wavelength study presented here. We collected VLA/HI, UV/GALEX, optical Halpha and MIR/Spitzer images of a few nearby interacting systems chosen for their prominent "intergalactic" star formation activity. Preliminary results on the spectacular collisional HI ring around NGC 5291 are presented.Comment: 4 pages, 1 fig., tp appear in conference proceedings "Studying Galaxy Evolution with Spitzer and Herschel", eds. V. Charmandaris, D. Rigopoulou & N. Kylafi

    Ionization processes in a local analogue of distant clumpy galaxies: VLT MUSE IFU spectroscopy and FORS deep images of the TDG NGC 5291N

    Full text link
    We present IFU observations with MUSE@VLT and deep imaging with FORS@VLT of a dwarf galaxy recently formed within the giant collisional HI ring surrounding NGC 5291. This TDG-like object has the characteristics of typical z=1-2 gas-rich spiral galaxies: a high gas fraction, a rather turbulent clumpy ISM, the absence of an old stellar population, a moderate metallicity and star formation efficiency. The MUSE spectra allow us to determine the physical conditions within the various complex substructures revealed by the deep optical images, and to scrutinize at unprecedented spatial resolution the ionization processes at play in this specific medium. Starburst age, extinction and metallicity maps of the TDG and surrounding regions were determined using the strong emission lines Hbeta, [OIII], [OI], [NII], Halpha and [SII] combined with empirical diagnostics. Discrimination between different ionization mechanisms was made using BPT--like diagrams and shock plus photoionization models. Globally, the physical conditions within the star--forming regions are homogeneous, with in particular an uniform half-solar oxygen abundance. At small scales, the derived extinction map shows narrow dust lanes. Regions with atypically strong [OI] emission line immediately surround the TDG. The [OI] / Halpha ratio cannot be easily accounted for by photoionization by young stars or shock models. At larger distances from the main star--forming clumps, a faint diffuse blue continuum emission is observed, both with the deep FORS images and MUSE data. It does not have a clear counterpart in the UV regime probed by GALEX. A stacked spectrum towards this region does not exhibit any emission line, excluding faint levels of star formation, nor stellar absorption lines that might have revealed the presence of old stars. Several hypotheses are discussed for the origin of these intriguing features.Comment: 13 pages, 15 figures, accepted for publication in A&

    Star Formation in Collision Debris: Insights from the modeling of their Spectral Energy Distribution

    Get PDF
    During galaxy-galaxy interactions, massive gas clouds can be injected into the intergalactic medium which in turn become gravitationally bound, collapse and form stars, star clusters or even dwarf galaxies. The objects resulting from this process are both "pristine", as they are forming their first generation of stars, and chemically evolved because the metallicity inherited from their parent galaxies is high. Such characteristics make them particularly interesting laboratories to study star formation. After having investigated their star-forming properties, we use photospheric, nebular and dust modeling to analyze here their spectral energy distribution (SED) from the far-ultraviolet to the mid-infrared regime for a sample of 7 star-forming regions. Our analysis confirms that the intergalactic star forming regions in Stephan's Quintet, around Arp 105, and NGC 5291, appear devoid of stellar populations older than 10^9 years. We also find an excess of light in the near-infrared regime (from 2 to 4.5 microns) which cannot be attributed to stellar photospheric or nebular contributions. This excess is correlated with the star formation rate intensity suggesting that it is probably due to emission by very small grains fluctuating in temperature as well as the polycyclic aromatic hydrocarbons (PAH) line at 3.3 micron. Comparing the attenuation via the Balmer decrement to the mid-infrared emission allows us to check the reliability of the attenuation estimate. It suggests the presence of embedded star forming regions in NGC 5291 and NGC 7252. Overall the SED of star-forming regions in collision debris (and Tidal Dwarf Galaxies) resemble more that of dusty star-forming regions in galactic disks than to that of typical star-forming dwarf galaxies.Comment: 22 pages, 24 figures, accepted for publication in A

    Tidal Debris posing as Dark Galaxies

    Full text link
    Debris sent into the intergalactic medium during tidal collisions can tell us about several fundamental properties of galaxies, in particular their missing mass, both in the form of cosmological Dark Matter and so-called Lost Baryons. High velocity encounters, which are common in clusters of galaxies, are able to produce faint tidal debris that may appear as star-less, free floating HI clouds. These may be mistaken for Dark Galaxies, a putative class of gaseous, dark matter dominated, objects which for some reason never managed to form stars. VirgoHI21 is by far the most spectacular and most discussed Dark Galaxy candidate so far detected in HI surveys. We show here that it is most likely made out of material expelled 750 Myr ago from the nearby spiral galaxy NGC 4254 during its fly--by at about 1000 km/s by a massive intruder. Our numerical model of the collision is able to reproduce the main characteristics of the system: in particular the absence of stars, and its prominent velocity gradient. Originally attributed to the gas being in rotation within a massive dark matter halo, we find it instead to be consistent with a combination of simple streaming motion plus projection effects (Duc & Bournaud, 2007). We discuss several ways to identify a tidal origin in a Dark Galaxy candidate and illustrate the method using another HI system in Virgo, VCC 2062, which is most likely a Tidal Dwarf Galaxy (Duc et al., 2007). Now, whereas tidal debris should not contain any dark matter from the halo of their parent galaxies, it may exhibit missing mass in the form of dark baryons, unaccounted for by classical observations, as recently found in the collisional ring of NGC 5291 (Bournaud et al., 2007) and probably in the TDG VCC 2062. These "Lost Baryons" must originally have been located in the disks of their parent galaxies.Comment: 10 pages, 4 figures, to appear in IAU symposium 244 "Dark Galaxies and Lost Baryons
    • …
    corecore