743 research outputs found

    Energizing Star Formation: The Cosmic Ray Ionization Rate in NGC 253 Derived From ALCHEMI Measurements of H3_3O+^+ and SO

    Get PDF
    The cosmic ray ionization rate (CRIR) is a key parameter in understanding the physical and chemical processes in the interstellar medium. Cosmic rays are a significant source of energy in star formation regions, which impacts the physical and chemical processes which drive the formation of stars. Previous studies of the circum-molecular zone (CMZ) of the starburst galaxy NGC 253 have found evidence for a high CRIR value; 103−10610^3-10^6 times the average cosmic ray ionization rate within the Milky Way. This is a broad constraint and one goal of this study is to determine this value with much higher precision. We exploit ALMA observations towards the central molecular zone of NGC 253 to measure the CRIR. We first demonstrate that the abundance ratio of H3_3O+^+ and SO is strongly sensitive to the CRIR. We then combine chemical and radiative transfer models with nested sampling to infer the gas properties and CRIR of several star-forming regions in NGC 253 due to emission from their transitions. We find that each of the four regions modelled has a CRIR in the range (1−80)×10−14(1-80)\times10^{-14} s−1^{-1} and that this result adequately fits the abundances of other species that are believed to be sensitive to cosmic rays including C2_2H, HCO+^+, HOC+^+, and CO. From shock and PDR/XDR models, we further find that neither UV/X-ray driven nor shock dominated chemistry are a viable single alternative as none of these processes can adequately fit the abundances of all of these species.Comment: 24 pages, 15 figures, accepted for publication in Ap

    Starburst Energy Feedback Seen through HCO+/HOC+Emission in NGC 253 from ALCHEMI

    Get PDF
    Molecular abundances are sensitive to the UV photon flux and cosmic-ray ionization rate. In starburst environments, the effects of high-energy photons and particles are expected to be stronger. We examine these astrochemical signatures through multiple transitions of HCO+ and its metastable isomer HOC+ in the center of the starburst galaxy NGC 253 using data from the Atacama Large Millimeter/submillimeter Array large program ALMA Comprehensive High-resolution Extragalactic Molecular inventory. The distribution of the HOC+(1-0) integrated intensity shows its association with "superbubbles,"cavities created either by supernovae or expanding H ii regions. The observed HCO+/HOC+ abundance ratios are ∌10-150, and the fractional abundance of HOC+ relative to H2 is ∌1.5 × 10-11-6 × 10-10, which implies that the HOC+ abundance in the center of NGC 253 is significantly higher than in quiescent spiral arm dark clouds in the Galaxy and the Galactic center clouds. Comparison with chemical models implies either an interstellar radiation field of G 0 âȘ† 103 if the maximum visual extinction is âȘ†5, or a cosmic-ray ionization rate of ζ âȘ† 10-14 s-1 (3-4 orders of magnitude higher than that within clouds in the Galactic spiral arms) to reproduce the observed results. From the difference in formation routes of HOC+, we propose that a low-excitation line of HOC+ traces cosmic-ray dominated regions, while high-excitation lines trace photodissociation regions. Our results suggest that the interstellar medium in the center of NGC 253 is significantly affected by energy input from UV photons and cosmic rays, sources of energy feedback.N.H. acknowledges support from JSPS KAKENHI grant No. JP21K03634. K.S. has been supported by grants MOST 108-2112-M-001-015 and 109- 2112-M-001-020 from the Ministry of Science and Technology, Taiwan. Y.N. is supported by the NAOJ ALMA Scientific Research grant No. 2017-06B. V.M.R. and L.C. are funded by the Comunidad de Madrid through the AtracciĂłn de Talento Investigador (Doctores con experiencia) Grant (COOL: Cosmic Origins Of Life; 2019-T1/TIC-15379)

    A z=0 Multi-wavelength Galaxy Synthesis I: A WISE and GALEX Atlas of Local Galaxies

    Full text link
    We present an atlas of ultraviolet and infrared images of ~15,750 local (d < 50 Mpc) galaxies, as observed by NASA's WISE and GALEX missions. These maps have matched resolution (FWHM 7.5'' and 15''), matched astrometry, and a common procedure for background removal. We demonstrate that they agree well with resolved intensity measurements and integrated photometry from previous surveys. This atlas represents the first part of a program (the z=0 Multi-wavelength Galaxy Synthesis) to create a large, uniform database of resolved measurements of gas and dust in nearby galaxies. The images and associated catalogs are publicly available at the NASA/IPAC Infrared Science Archive. This atlas allows us estimate local and integrated star formation rates (SFRs) and stellar masses (M⋆_\star) across the local galaxy population in a uniform way. In the appendix, we use the population synthesis fits of Salim et al. (2016, 2018) to calibrate integrated M⋆_\star and SFR estimators based on GALEX and WISE. Because they leverage an SDSS-base training set of >100,000 galaxies, these calibrations have high precision and allow us to rigorously compare local galaxies to Sloan Digital Sky Survey results. We provide these SFR and M⋆_\star estimates for all galaxies in our sample and show that our results yield a "main sequence" of star forming galaxies comparable to previous work. We also show the distribution of intensities from resolved galaxies in NUV-to-WISE1 vs. WISE1-to-WISE3 space, which captures much of the key physics accessed by these bands.Comment: 46 pages, 27 figures, published in ApJS (https://ui.adsabs.harvard.edu/abs/2019ApJS..244...24L/abstract ). See that version for full resolution figures and machine readable tables. Go download data for your favorite nearby galaxy here: https://irsa.ipac.caltech.edu/data/WISE/z0MGS/overview.html . The appendix presents detailed analysis of translations to physical quantitie

    Application of synchrotron radiation-based methods for environmental biogeochemistry: Introduction to the spatial section

    Full text link
    To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicable to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools. (Résumé d'auteur

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (Ό̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),Ό̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe
    • 

    corecore