66 research outputs found

    Sources and Sinks of Diversification and Conservation Priorities for the Mexican Tropical Dry Forest

    Get PDF
    Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources) and areas where species are maintained but where diversification is less likely to occur (diversity sinks). We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making

    Phylogenetic relationships within Chamaecrista sect. Xerocalyx (Leguminosae, Caesalpinioideae) inferred from the cpDNA trnE-trnT intergenic spacer and nrDNA ITS sequences

    Get PDF
    Chamaecrista belongs to subtribe Cassiinae (Caesalpinioideae), and it comprises over 330 species, divided into six sections. The section Xerocalyx has been subjected to a profound taxonomic shuffling over the years. Therefore, we conducted a phylogenetic analysis using a cpDNA trnE-trnT intergenic spacer and nrDNA ITS/5.8S sequences from Cassiinae taxa, in an attempt to elucidate the relationships within this section from Chamaecrista. The tree topology was congruent between the two data sets studied in which the monophyly of the genus Chamaecrista was strongly supported. Our analyses reinforce that new sectional boundaries must be defined in the Chamaecrista genus, especially the inclusion of sections Caliciopsis and Xerocalyx in sect. Chamaecrista, considered here paraphyletic. The section Xerocalyx was strongly supported as monophyletic; however, the current data did not show C. ramosa (microphyllous) and C. desvauxii (macrophyllous) and their respective varieties in distinct clades, suggesting that speciation events are still ongoing in these specimens

    Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature

    Get PDF
    In natural systems plants face a plethora of antagonists and thus have evolved multiple defence strategies. Lima bean (Phaseolus lunatus L.) is a model plant for studies of inducible indirect anti-herbivore defences including the production of volatile organic compounds (VOCs) and extrafloral nectar (EFN). In contrast, studies on direct chemical defence mechanisms as crucial components of lima beans' defence syndrome under natural conditions are nonexistent. In this study, we focus on the cyanogenic potential (HCNp; concentration of cyanogenic glycosides) as a crucial parameter determining lima beans' cyanogenesis, i.e. the release of toxic hydrogen cyanide from preformed precursors. Quantitative variability of cyanogenesis in a natural population of wild lima bean in Mexico was significantly correlated with missing leaf area. Since existing correlations do not by necessity mean causal associations, the function of cyanogenesis as efficient plant defence was subsequently analysed in feeding trials. We used natural chrysomelid herbivores and clonal lima beans with known cyanogenic features produced from field-grown mother plants. We show that in addition to extensively investigated indirect defences, cyanogenesis has to be considered as an important direct defensive trait affecting lima beans' overall defence in nature. Our results indicate the general importance of analysing ‘multiple defence syndromes’ rather than single defence mechanisms in future functional analyses of plant defences

    Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae)

    Get PDF
    To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquatica–B. filifolia and B. guehoi–B. liniflora–B. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2–12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex

    Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?

    Get PDF
    Background: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce selfing; however, this has not been accurately assessed. Methodology/Principal Findings: This expectation was tested over two years in two natural populations of the closely related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the cyathia level. Both spurges showed a high population synchrony (Z,79), and their inflorescences flower synchronously. In E. nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was partially self-incompatible. Conclusions/Significance: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each process is sufficiently effective in avoiding self-fertilization.España Ministerio de Ciencia y Tecnología PLO CGL2005-03731; CGL2008-02533-EEspaña Ministerio de Ciencia y Tecnología MA CGL2009-0825

    Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    Get PDF
    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore