765 research outputs found

    The Development of a Common Investment Appraisal for Urban Transport Projects.

    Get PDF
    In December 1990 we were invited by Birmingham City Council and Centro to submit a proposal for an introductory study of the development of a common investment appraisal for urban transport projects. Many of the issues had arisen during the Birmingham Integrated Transport Study (BITS) in which we were involved, and in the subsequent assessment of light rail schemes of which we have considerable experience. In subsequent discussion, the objectives were identified as being:- (i) to identify, briefly, the weaknesses with existing appraisal techniques; (ii) to develop proposals for common methods for the social cost-benefit appraisal of both urban road and rail schemes which overcome these weaknesses; (iii) to develop complementary and consistent proposals for common methods of financial appraisal of such projects; (iv) to develop proposals for variants of the methods in (ii) and (iii) which are appropriate to schemes of differing complexity and cost; (v) to consider briefly methods of treating externalities, and performance against other public sector goals, which are consistent with those developed under (ii) to (iv) above; (vi) to recommend work to be done in the second phase of the study (beyond March 1991) on the provision of input to such evaluation methods from strategic and mode-specific models, and on the testing of the proposed evaluation methods. Such issues are particularly topical at present, and we have been able to draw, in our study, on experience of:- (i) evaluation methods developed for BITS and subsequent integrated transport studies (MVA) (ii) evaluation of individual light rail and heavy rail investment projects (ITS,MVA); (iii) the recommendations of AMA in "Changing Gear" (iv) advice to IPPR on appraisal methodology (ITS); (v) submissions to the House of Commons enquiry into "Roads for the Future" (ITS); (vi) advice to the National Audit Office (ITS) (vii) involvement in the SACTRA study of urban road appraisal (MVA, ITS

    The vulnerabilities of computerized physician order entry systems: a qualitative study

    Get PDF
    Objective To test the vulnerabilities of a wide range of computerized physician order entry (CPOE) systems to different types of medication errors, and develop a more comprehensive qualitative understanding of how their design could be improved. Materials and Methods The authors reviewed a random sample of 63 040 medication error reports from the US Pharmacopeia (USP) MEDMARX reporting system where CPOE systems were considered a “contributing factor” to errors and flagged test scenarios that could be tested in current CPOE systems. Testers entered these orders in 13 commercial and homegrown CPOE systems across 16 different sites in the United States and Canada, using both usual practice and where-needed workarounds. Overarching themes relevant to interface design and usability/workflow issues were identified. Results CPOE systems often failed to detect and prevent important medication errors. Generation of electronic alert warnings varied widely between systems, and depended on a number of factors, including how the order information was entered. Alerts were often confusing, with unrelated warnings appearing on the same screen as those more relevant to the current erroneous entry. Dangerous drug-drug interaction warnings were displayed only after the order was placed rather than at the time of ordering. Testers illustrated various workarounds that allowed them to enter these erroneous orders. Discussion and Conclusion The authors found high variability in ordering approaches between different CPOE systems, with major deficiencies identified in some systems. It is important that developers reflect on these findings and build in safeguards to ensure safer prescribing for patients

    Twisted k-graph algebras associated to Bratteli diagrams

    Get PDF
    Given a system of coverings of k-graphs, we show that the cohomology of the resulting (k+1)-graph is isomorphic to that of any one of the k-graphs in the system. We then consider Bratteli diagrams of 2-graphs whose twisted C*-algebras are matrix algebras over noncommutative tori. For such systems we calculate the ordered K-theory and the gauge-invariant semifinite traces of the resulting 3-graph C*-algebras. We deduce that every simple C*-algebra of this form is Morita equivalent to the C*-algebra of a rank-2 Bratteli diagram in the sense of Pask-Raeburn-R{\o}rdam-Sims.Comment: 28 pages, pictures prepared using tik

    Twistors and Black Holes

    Full text link
    Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function (in the supergravity approximation) for BPS black holes with fixed electric and magnetic charges.Comment: 47 pages, v2: typos corrected, reference added, v3: minor change

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore