65 research outputs found

    Positioning the Root Elongation Zone Is Saltatory and Receives Input from the Shoot

    Get PDF
    In the root, meristem and elongation zone lengths remain stable, despite growth and division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana roots through a horizontal microscope, and used image analysis to obtain velocity profiles. For a root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is regulated tightly. However, the position of the elongation zone saltated, by on average 17 μm every 5 min. Saltation was apparently driven by material elements growing faster and then slower, while moving through the growth zone. When the shoot was excised, after about 90 minutes, growth zone dynamics resembled those of intact roots, except that the position of the elongation zone moved, on average, rootward, by several hundred microns in 24 h. We hypothesize that mechanisms determining elongation zone position receive input from the shoot

    The Fragile Fiber1 Kinesin Contributes to Cortical Microtubule-Mediated Trafficking of Cell Wall Components

    Get PDF
    The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion

    Aluminium reduces sugar uptake in tobacco cell cultures: a potential cause of inhibited elongation but not of toxicity

    Get PDF
    Aluminium is well known to inhibit plant elongation, but the role in this inhibition played by water relations remains unclear. To investigate this, tobacco (Nicotiana tabacum L.) suspension-cultured cells (line SL) was used, treating them with aluminium (50 μM) in a medium containing calcium, sucrose, and MES (pH 5.0). Over an 18 h treatment period, aluminium inhibited the increase in fresh weight almost completely and decreased cellular osmolality and internal soluble sugar content substantially; however, aluminium did not affect the concentrations of major inorganic ions. In aluminium-treated cultures, fresh weight, soluble sugar content, and osmolality decreased over the first 6 h and remained constant thereafter, contrasting with their continued increases in the untreated cultures. The rate of sucrose uptake, measured by radio-tracer, was reduced by approximately 60% within 3 h of treatment. Aluminium also inhibited glucose uptake. In an aluminium-tolerant cell line (ALT301) isogenic to SL, all of the above-mentioned changes in water relations occurred and tolerance emerged only after 6 h and appeared to involve the suppression of reactive oxygen species. Further separating the effects of aluminium on elongation and cell survival, sucrose starvation for 18 h inhibited elongation and caused similar changes in cellular osmolality but stimulated the production of neither reactive oxygen species nor callose and did not cause cell death. We propose that the inhibition of sucrose uptake is a mechanism whereby aluminium inhibits elongation, but does not account for the induction of cell death

    The Radially Swollen 4 Separase Mutation of Arabidopsis thaliana Blocks Chromosome Disjunction and Disrupts the Radial Microtubule System in Meiocytes

    Get PDF
    The caspase-family protease, separase, is required at the onset of anaphase to cleave the cohesin complex that joins replicated sister chromatids. However, in various eukaryotes, separase has acquired additional and distinct functions. A single amino-acid substitution in separase is responsible for phenotypes of the Arabidopsis thaliana mutant, radially swollen 4 (rsw4). This is a conditional mutant, resembling the wild type at the permissive temperature (∼20°C) and expressing mutant phenotypes at the restrictive temperature (∼30°C). Root cells in rsw4 at the restrictive temperature undergo non-disjunction and other indications of the loss of separase function. To determine to what extent separase activity remains at 30°C, we examined the effect of the mutation on meiosis, where the effects of loss of separase activity through RNA interference are known; and in addition, we examined female gametophyte development. Here, we report that, at the restrictive temperature, replicated chromosomes in rsw4 meiocytes typically fail to disjoin and the cohesin complex remains at centromeres after metaphase. Meiotic spindles appear normal in rsw4 male meiocytes; however the mutation disrupts the radial microtubule system, which is replaced by asymmetric arrays. Surprisingly, female gametophyte development was relatively insensitive to loss of separase activity, through either rsw4 or RNAi. These effects confirm that phenotypes in rsw4 result from loss of separase activity and establish a role for separase in regulating cell polarization following male meiosis

    Examining the generalizability of research findings from archival data

    Get PDF
    This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability—for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world
    corecore