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SUMMARY 22 

 In the root, meristem and elongation zone lengths remain stable, despite growth and 23 

division of cells. To gain insight into zone stability, we imaged individual Arabidopsis thaliana 24 

roots through a horizontal microscope, and used image analysis to obtain velocity profiles. For a 25 

root, velocity profiles obtained every 5 min over 3 h coincided closely, implying that zonation is 26 

regulated tightly. However, the position of the elongation zone saltated, by on average 17 µm 27 

every 5 min. Saltation was apparently driven by material elements growing faster and then 28 

slower, while moving through the growth zone. When the shoot was excised, after about 90 29 

minutes, growth zone dynamics resembled those of intact roots, except that the position of the 30 

elongation zone moved, on average, rootward, by several hundred microns in 24 h. We 31 

hypothesize that mechanisms determining elongation zone position receive input from the shoot.     32 

  33 
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INTRODUCTION 34 

 The region at the tip of the plant root where growth occurs is divided into functional 35 

zones. The zones generally distinguished are cap, meristem, elongation zone, and maturation 36 

zone. At the extremity of the root, the cap protects the meristem, senses gravity, and deposits 37 

material—and even cells—that influence the structure of the soil and the behavior of surrounding 38 

organisms. The meristem contains cells that divide continuously, generating the cells that make 39 

up the root. The elongation zone contains cells that do not divide and instead elongate rapidly, 40 

about ten times faster than meristem cells. Finally, shootward of the elongation zone comes the 41 

maturation zone, where cells neither elongate nor divide but take on their mature functions. Here, 42 

we use shootward to mean toward the shoot tip and rootward to mean towards the root tip 43 

(Baskin et al., 2010). 44 

 While these functional zones are a basic attribute of roots, the zones are often perceived 45 

as static entities. Seeing the root’s zonation as static arises perhaps because of the discrete 46 

functions of the zones or because an image shows the root at only a single time point, divided 47 

into zones like countries on a map. Nevertheless, because root cells are growing, the zones are 48 

dynamic. On its own, the growth of cells would enlarge meristem and elongation zone 49 

indefinitely. To the contrary, as the root grows, these zones often maintain a constant length and 50 

when they do change length, the change is finite. Thus, the positions of the boundaries between 51 

the zones must be adjusted continually, usually moving in step with growth (Figure 1A). As the 52 

boundaries keep pace with the root tip, a cell in the meristem, say, will soon find itself in the 53 

elongation zone, and soon after that, in the maturation zone.  54 

 A boundary sweeping across cells is unusual. Developmental boundaries usually block 55 

cell passage and in fact interactions between cells on either side of the boundary are used to 56 

reinforce distinct cell identities. For example, the leaf blade is divided into abaxial and adaxial 57 

zones, a differentiation maintained in part by cells in each domain interacting antagonistically 58 

where they meet at the leaf margin. In the root, even while the boundaries move across fields of 59 
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cells, the specialization of each zone remains intact. We have a limited understanding of how 60 

zones of stable identity are maintained despite the boundaries moving over cells.  61 

 In general, we might account for dynamic boundaries by invoking two kinds of 62 

mechanism. The first is cell-autonomous. This view endows a cell with a behavioral program 63 

(divide for some period, elongate for some period, then mature) and the relatively coherent 64 

behavior of myriad cells in the root emerges from programs being run in strict synchrony. The 65 

second is non-cell-autonomous, where extrinsic signals impinge on cells at the boundary and 66 

modify behavior. In distinguishing these views, we note that cell autonomy has been considered 67 

to underlie certain root growth behaviors (Band et al., 2012; Cole et al., 2014; Pavelescu et al., 68 

2018) but also generates discontinuous growth patterns that are contrary to observations of root 69 

anatomy (De Vos et al., 2014). These mechanisms are not exclusive and indeed both probably 70 

are operating to delimit boundaries effectively.  71 

 To gain insight into how roots maintain a stable zonation, we sought to characterize 72 

boundary movement during growth. To do so, we took advantage of the fact that the boundaries 73 

are evident in kinematic analysis. Kinematics revolve around velocity, the rate and direction of 74 

movement (Silk and Erickson, 1979; Gandar, 1983; Silk, 1984). Because a root grows 75 

predominantly axially, kinematics are simplified by reporting velocity in the direction parallel to 76 

the root’s long axis only and by averaging points over the root’s cross section. This generates a 77 

one-dimensional velocity profile, plotting speed as a function of distance from the tip. In general, 78 

the velocity profile falls gradually from a maximum at the very tip, and then falls steeply, before 79 

finally reaching zero. The gradual region corresponds to the meristem, the steep region to the 80 

elongation zone, and the region with zero velocity to the maturation zone. Thus, the velocity 81 

profile reveals the boundaries between these zones as defined by their growth. 82 

 To an observer, velocity is greatest at the root tip and falls to zero at the maturation zone, 83 

where there is no growth and hence no motion; we will refer to this observational viewpoint as 84 

the laboratory frame. To simplify calculations, an alternative frame of reference is used for 85 

kinematic analysis, namely the root tip frame (Silk, 1984). In this frame, the tip of the root is the 86 
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origin (position and velocity both equal zero), and velocity rises to reach a plateau in non-87 

growing regions. For a root growing at steady state, in the laboratory frame the boundaries move 88 

at the same rate as the root tip and traverse cells; whereas in root-tip frame, the boundaries are 89 

motionless and cells move across the boundary from one zone to the next (Figure 1).  90 

 We used Arabidopsis thaliana, because the thin roots of these species facilitate high 91 

resolution imaging and kinematic analysis (Beemster and Baskin, 1998), and imaged the same 92 

root for three hours, obtaining a velocity profile every 5 min. Here, we show that growth 93 

dynamics over 3 h are remarkably stable. However, the rootward boundary of the elongation 94 

zone saltates toward and away from the tip. Overall,  the saltations span approximately 75 µm, 95 

with an average step in 5 min of 17 µm. When the shoot is removed, the root continues to grow 96 

but shootward steps are modestly suppressed and thus the position where rapid elongation rate is 97 

attained moves steadily rootward, halving the length of the meristem in 24 h. These results 98 

suggest that the boundary between meristem and elongation zone is sited in part by an extrinsic 99 

signal, originating from the shoot. 100 
  101 
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RESULTS 102 

Root growth dynamics vary significantly over time 103 

 To characterize root growth dynamics, we imaged a root for three hours so that a velocity 104 

profile could be obtained every 5 min. Roots were imaged through a horizontal microscope and 105 

grew inside the agar medium, an enclosure that enhances image quality and suppresses lateral 106 

movement of the root (See Figure S4). Images spanned meristem and elongation zone but 107 

excluded the maturation zone, because including it would have decreased resolution. From a pair 108 

of images separated by 30 sec, the velocity profile was obtained by Stripflow software (Yang et 109 

al. 2017; Baskin and Zelinsky, 2019). At each pixel along the midline of the root image, starting 110 

at the quiescent center, Stripflow estimates the motion in the two images of a strip-like region of 111 

interest, as wide as the root and 40 pixels (~20 µm) long, centered at that midline pixel; the 112 

component of motion tangent to the midline is taken as velocity.   113 

 In general, the velocity profiles for a root coincided closely (Figure 2A). The alignment 114 

appeared closest in the rootward 0.5 mm or so, corresponding to the meristem along with any 115 

adjacent transition zone. For this study, a total of 35 control roots were imaged and all showed 116 

velocity profiles that were well aligned over the three hours (Figure S1). This study includes 117 

roots imaged in the UK (Nottingham) and in the USA (Amherst) with similar results. To 118 

illustrate the alignment, we averaged all 37 velocity profiles for a single root and plotted the 119 

standard deviation around that average (Figure 2B) and the residuals (Figure 2C). Both types of 120 

plot have a transition between regions of low and high variability (at around x = 475 µm in the 121 

example shown), with the sharpness of the transition underscoring the congruence among the 122 

underlying velocity profiles.  123 

 To characterize the temporal variation within a set of velocity profiles, we used principal 124 

component analysis. Strikingly, the first component score explained more than 60% of the 125 

variation in the data while the second explained less than 8% by (Figure 3A). Because of its 126 

dominance, we focus here on principal component one. The first component score, but neither 127 

the second nor third, underwent pronounced temporal fluctuations (Figures 3B, S2). These 128 
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fluctuations appeared broad and somewhat sinusoidal for the roots imaged in Nottingham but 129 

narrower and less regular for those imaged in Amherst (Figure S2). To determine how likely this 130 

temporal variation would have happened by chance, we carried out a runs test, which tests for 131 

serial correlation in a sequence of values against a null hypothesis stating the sequence is random 132 

(Bradley, 1968). For the roots imaged in Nottingham, the time dependent variation in the first 133 

principal component was significant in 11 out of the 12 roots imaged, and for roots imaged in 134 

Amherst, the variation was significant in 17 out of the 23 roots imaged (Figure 3C). Thus for 135 

most roots, velocity profiles over time deviate from perfect superposition not only because of 136 

noise but also because of some non-random (i.e., time-dependent) behavior.  137 

 138 

The first principal component score relates to the position of the elongation zone 139 

 Principal component analysis has the advantage of acting on the data directly, without 140 

any modification; however, it has the disadvantage that the components elaborated are purely 141 

mathematical. To relate the principal component to root growth, we parameterized the velocity 142 

profile. The first parameter is tip velocity (i.e., the rate at which the tip moves), measured directly 143 

by Stripflow. The second parameter, Trx, was obtained as the x-coordinate of the intersection of 144 

the best-fit pair of lines to the velocity profile (Figure 4A). Trx, represents, roughly, the 145 

transition between meristem and elongation zone. Then, lines were fitted to the data on either 146 

side of Trx, except that a 300 µm interval, centered on Trx, was excluded because the velocity 147 

profile within this region is non-linear (Figure 4B). Also excluded was the shootward region of 148 

the data in any instances where the profile curved downward due to the velocity plateau (see e.g., 149 

Figure 7D).  The next two parameters were the slopes of these lines (m1 for the presumptive 150 

meristem, m2 for the elongation zone). The slopes have units of 1/time and estimate elemental 151 

elongation rate. This rate is how fast length increases without regard to absolute length and 152 

represents the speed of the elongation process itself (a process sometimes called cell elongation, 153 

despite the process being sub-cellular). Strictly speaking, elemental elongation rate applies to an 154 

infinitesimal increment of length; by fitting a line to a segment of the velocity profile, we are 155 
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approximating elemental elongation rate over that region as constant, equal to the line’s slope.  156 

The final parameter, x-int, was obtained as the x-axis coordinate of the point where the line fitted 157 

to the profile in the elongation zone for m2 intersects a horizontal line at a value of y chosen for 158 

that root to bisect the average fitted interval (Figure 4B). In terms of root growth, x-int represents 159 

the relative position of the zone of elongation (i.e., a larger value indicates that the elongation 160 

zone is farther from the tip).  161 

 When the parameters at each time are averaged over the roots in the data set, their 162 

temporal stability is clear (Figure 4C). Stability was also seen for growth rate in meristem (m1) 163 

but this parameter is less accurately measured and is omitted from Figure 4C (see Figure S12). 164 

Only tip velocity changed by more than 5% over the 3 h, increasing steadily. Roots of A. 165 

thaliana are known to grow faster over time (Beemster and Baskin, 1998) although that study 166 

reported a rate of increase about half as fast as seen here. Both Trx and the x-intercept were 167 

strikingly constant over the 3 hours. Although the absolute values of the parameters on average 168 

show that roots imaged at Amherst were growing slightly faster and with slightly larger 169 

elemental growth rate in the elongation zone (m2) than those in Nottingham, the data from the 170 

two laboratories are otherwise similar (Table 1).  171 

 These parameters were chosen to represent distinct elements of the velocity profile. To 172 

examine to what extent the parameters are independent, we calculated the correlation coefficient 173 

between various pairs (Figure 5A). The parameters were correlated modestly though average R
2
 174 

values were rather low. The reasons for the modest correlations are not clear but we feel that 175 

such a level of dependence will not influence our conclusions unduly.  176 

 Next, we calculated the correlation between these parameters and the first principal 177 

component score. Here, because the sign of the component is arbitrary, we present the values for 178 

the squared coefficient only (Figure 5B). The first principal component score was correlated 179 

weakly to m1, m2, and Trx, but strongly to the x-intercept. To illustrate the strength of this 180 

correlation, we plot x-int together with the score versus time (Figures 6, S3). The strict similarity 181 

extends even to roots where the temporal variation in the first component was not significant in 182 
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the runs test. Evidently, the time-dependent variation demonstrated for the first principal 183 

component is captured substantially by x-int. Insofar as x-int reflects the position of the 184 

elongation zone, these results indicate that the localization of that zone saltates.   .  185 

  186 

Shoot removal provokes the x-intercept to move rootward 187 

 To characterize the time-dependent variation further, we perturbed root growth by 188 

removing the shoot. Because in our system the roots grow inside the agar, removing the shoot is 189 

convenient compared to imposing salt or nutrient stress. Also, because the growth medium for all 190 

experiments contains sucrose, an energy source remains present. Without a shoot, the primary 191 

root grew surprisingly well for several days (Figure S4). To allow transients to diminish, we 192 

waited for 2 h before starting the 3 h-image acquisition. As for intact plants, roots without a 193 

shoot had velocity profiles over time that coincided closely (Figure 7A). In a few examples, the 194 

growth zone appeared to be shortened, evidenced by the velocity nearing a plateau (Figure S5). 195 

Also similar to intact plants, the parameters were correlated to each other to only a limited extent, 196 

while the first principal component score was again strikingly correlated to the x-intercept 197 

(Figure 5C, D).  198 

 However, differences from intact plants appear when considering the parameters 199 

averaged at each time point (Figure 7B). While tip velocity increased across most of the interval, 200 

similar to the increase for intact plants (Figure 4), the elongation zone slope (m2) increased more 201 

steeply while the x-intercept, and to a lesser extent Trx, decreased steadily (Figure 7B). 202 

Furthermore, removing the shoot altered the behavior of the first principal component score and 203 

likewise the x-intercept: the saltations became unbalanced, moving the x-intercept on-average 204 

rootward (Figure 8, S6). On average over the 3 h interval, the x-intercept moved closer to the tip 205 

by about 100 µm.  206 

 To extend these results, after removing the shoot, we waited 24 h before starting the 3 h 207 

image acquisition. Again, the 37 velocity profiles closely coincided, only now the profiles for 208 

nearly all of the roots reached an evident plateau, indicating that the complete growth zone had 209 
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become small enough to be spanned by the ~1.2 mm image field (Figures 7C, S7). The shorter 210 

growth zone gave rise to a reduced tip velocity (Table 1). Based on parameterizing the velocity 211 

profiles and on principal component analysis, the root’s behavior at 24 h after excision 212 

resembled a noisier version of the behavior at 2 h (Figures 7D, S8, S9). In particular, although its 213 

progress was noisy and diminished, the x-intercept continued a net rootward movement. By 24 h 214 

after shoot removal, the elongation zone slope (m2) had recovered its pre-excision value whereas 215 

Trx had moved about 250 µm toward the tip (Table 1). Strongly decreased Trx a day after 216 

excision is consistent with previous observations of the A. thaliana root having a shorter 217 

apparent meristem two days following shoot excision (Grieneisen et al., 2007; Mähönen et al., 218 

2014).  219 

 Evidently, removing the shoot converts a stable back-and-forth saltation of the x-intercept 220 

to a net movement toward the tip. To determine how soon this new pattern was established, we 221 

began the 3 h-image acquisition as soon as possible after shoot excision, in practice about 2 min. 222 

Note that for the following data, time zero is the time of the first image, not the time of cutting. 223 

With this treatment, the velocity profiles diverged (Figure 9A, S10). About 15 min after 224 

removing the shoot, the measured parameters changed profoundly but transiently; by 45 min 225 

after cutting, tip velocity and elongation zone slope fell to about half of their time zero-value, 226 

similar to results for tobacco (Nagel et al., 2006), while both Trx and x-intercept increased by 227 

around 25% (Figure 9B). After ~45 min, all of these parameters returned to near their pre-cut 228 

values, with only tip velocity failing to recover. We normalized parameter values to their value at 229 

120 min and plotted them on the same scale as used previously (Figure 9C). After 120 min, the 230 

parameters changed steadily and in a way that resembled what was seen for roots imaged starting 231 

2 h after shoot removal. The similarity between the third hour of the roots imaged immediately 232 

after shoot removal and the first hour of those imaged starting 2 h afterward is apparent from 233 

plotting absolute values of the parameters (Figure S11).  234 

 Along with causing the x-intercept to move rootward, removing the shoot also decreased 235 

the elemental elongation rate of the meristem (m1) (Table 1; Figure S12). This rate was 236 
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particularly low 4 to 5 h after shoot removal but had not recovered fully by 24 h. It would be 237 

interesting to determine whether this was accompanied by an increased duration of the cell cycle. 238 

In general, rates of division and elongation in the meristem are tightly coupled, keeping average 239 

cell length constant (Green, 1976) but we know little about how this is regulated.  240 

  To gain further insight into the movement of the x-intercept, we plotted the distribution 241 

of the amount moved (“step size”) in five min (i.e., between each time point) for intact plants and 242 

those imaged 2 h after shoot removal (Figure 10A). The distribution for intact plants was 243 

symmetrical with the majority of steps being 10 µm or less. The mean was slightly negative 244 

(rootward) implying there might have been a slight net rootward displacement of the x-intercept, 245 

too small to have shown up in the average plots. The shape of the distribution differed from that 246 

of a Gaussian curve, a deviation implying that the underlying process is out-of-equilibrium, 247 

consistent with a non-random temporal process (Wang et al., 2012). Removing the shoot 248 

changed the distribution subtly. First, shoulders appeared at  -30 and  +20 µm . Second, the 249 

frequency of the smallest rootward step size was increased while the frequency of most 250 

shootward step sizes was reduced. We also examined the cumulative distribution of steps by 251 

sorting steps for each root from largest negative  to largest positive step (Figure 10B, C). For all 252 

step-size ranks, the steps of cut roots were a few microns more negative than those of intact roots, 253 

a difference that if anything was slightly larger for shootward (i.e. positive) steps. Taken together, 254 

these data show that, with the shoot removed, balanced saltation of the elongation zone 255 

continued but the balance point moved slowly (10 - 30 µm/h) rootward.    256 

 257 

Temporal analysis shows material elements grow faster and then slower 258 

 The above analysis was spatial (sometimes called Eulerian); a contrasting approach is 259 

temporal (or Lagrangian) (Silk, 2006). A spatial reference is converted to a temporal one by 260 

means of a time-position trajectory (Figure 11A). To make the trajectory, a particle is placed at 261 

an arbitrary position (say, 400 µm from the tip) and allowed to move for five minutes at the 262 

velocity known for that position from the first velocity profile. The particle arrives at a new 263 
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position and the next five minute’s worth of movement is taken from the second velocity profile; 264 

and so on, until the last velocity profile. The positions reached by the particle at each time point 265 

gives rise to the trajectory. In Figure 11A, three trajectories are shown: from roughly 400 to 490 266 

µm, from 490 to 670 µm and from 670 to 1,100 µm. Together, the three trajectories span the 267 

transition region and most of the imaged elongation zone. Although each trajectory represents 268 

three hours, the trajectories are increasingly longer in space because velocity increases with 269 

position.  270 

 With trajectories built, we followed elemental elongation rate for a material element as it 271 

moved through the root (Figures 11B, C; S13). The material element represents an 272 

infinitesimally thin band of root, but one may imagine these plots as following a cell. When 273 

viewed with respect to time, elemental elongation rate increased gradually, particularly for the 274 

lower two trajectories, but here and there the rate fluctuated (Figure 11B). A fluctuation could 275 

happen in a single trajectory, or in two or all three synchronously (Figure S13). When viewed 276 

with respect to position, the fluctuations happened throughout the studied region (Figure 11C, 277 

S14). Notably in these fluctuations, local growth rate not only increased, it also decreased. 278 

Growth rate decreases are surprising, insofar as growth rate from meristem to elongation zone is 279 

generally considered to increase monotonically. As discussed below, these transients probably 280 

account for the saltatory movement of the x-intercept.  281 
  282 
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DISCUSSION 283 

 We sought to understand root zonation by characterizing growth dynamics. We found in 284 

general that growth dynamics are reasonably stable on a minutes-to-hours scale, implying the 285 

existence of tight regulation. Stable growth dynamics are consistent with previous observations 286 

(e.g., Chavarría-Krauser et al., 2008; Shih et al., 2014), at least as assessed by eye. But we also 287 

discovered significant temporal variation. The variation was significant statistically for the 288 

principal component one score, notable because principal component analysis reflects the data 289 

directly. Because the first component explains a majority of the variation in the dataset and is 290 

correlated tightly to x-int, we conclude that x-int likewise varies significantly over time. We did 291 

not carry out a runs test on x-int because of the strength of its correlation to the first component 292 

score. This x-intercept saltates toward and away from the root tip, a fluctuation implying that 293 

zonation is regulated in part by a feedback mechanism. Consistently, we discovered that 294 

removing the shoot alters the balance of x-intercept movement, resulting in the elongation zone 295 

moving toward the root tip. We hypothesize that the shoot supplies one or more signals to a 296 

feedback mechanism shaping the growth zone.  297 

 298 

Variations on the theme 299 

 Our experiments began at the University of Nottingham, where principal component one 300 

varied over time with sufficient regularity that we could fit a sine function to the data and 301 

determine an average period of around 90 min (also found with auto-correlation analysis). 302 

Experiments continued at the University of Massachusetts, where principal component one 303 

varied over time, but with less regularity (Figure S2). At Amherst, to obtain smoother kinetics, 304 

we varied a variety of factors, both biological (e.g., size of Petri dish, growth chamber model, 305 

seed batch) and technical (e.g., microscope camera, optics, light source), to no avail. That none 306 

of these things altered the results appreciably gives us confidence that they are robust; however, 307 

the reason for the qualitative differences between the two settings remains unknown.   308 
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 A 90 min period is similar to periods reported previously for various kinds of rhythmic 309 

growth phenomena, including organ growth rate (Baskin, 2015). These rhythms are sometimes 310 

called ultradian to contrast them with the longer and more commonly studied circadian rhythms. 311 

Therefore, we checked to what extent principal component one is correlated to tip velocity 312 

(Figure S15). For all of the treatments studied, squared correlation coefficients were spread 313 

rather evenly from zero to 1. Thus, in our system, displacement of the root tip is rhythmic in the 314 

ultradian range sometimes but not always; moreover, movement of the x-intercept is only 315 

occasionally associated tightly with root tip velocity.  316 

 317 

The movement of the x-intercept 318 

 What is the meaning of this x-intercept and its movement? The x-intercept is one of 319 

several parameters used here in representing the velocity profile as two linear regions (with slope 320 

m1 and m2) that flank a curved (and un-parameterized) transition region. These slopes represent 321 

elemental elongation rate. As shown previously, the velocity profile within the elongation zone is 322 

fitted by a line surprisingly well, meaning that it is reasonable to assume that the zone elongates 323 

at a constant rate throughout much of its length (van der Weele et al., 2003). The x-intercept 324 

represents the position of this line along the x-axis. When x-int decreases, the elongation zone 325 

has expanded to become closer to the root tip; conversely, when x-int increases, the elongation 326 

zone has receded to become farther away from the tip. We conceptualize changes in the x-327 

intercept as movement of the elongation zone’s rootward boundary, although we recognize that 328 

the boundary is gradual. Because the elongation zone was too large to image in its entirety, we 329 

do not know if rootward and shootward boundaries move independently, although we suspect 330 

they do.  331 

 What could cause the rootward boundary of the elongation zone to translate back and 332 

forth along the x-axis? The intercept’s position will be affected by changes in the slope of the 333 

line (m2); but, around the midpoint of the regression interval, these changes should be too small 334 

to shift the intercept’s position by the tens of microns often recorded. Also minor, compared to 335 
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the magnitude of x-intercept movement, is imprecision associated with defining the origin of 336 

each velocity profile (i.e., x = 0), an uncertainty that we estimate to be about plus-or-minus 1 µm. 337 

Given that the value of the x-intercept depends on the length of the meristem (plus associated 338 

transition zone), were that region to rapidly increase in length then that would move the x-339 

intercept shootward. However, the growth rates measured for that region are too slow to account 340 

for all but the smallest shootward steps.  341 

 Instead, the most tenable explanation for the back-and-forth movement are increases and 342 

decreases in elemental growth rate around the rootward flank of the elongation zone. A rootward 343 

step indicates that additional material has joined the zone of elongation, an accretion that 344 

shortens the distance between the root tip and rapidly elongating material; conversely, a 345 

shootward step indicates that a band of material at the rootward edge has slowed its elongation, a 346 

loss that increases the amount of slowly growing material between the tip and the elongation 347 

zone. This explanation motivated the temporal analysis, which in fact found the predicted growth 348 

rate transients (Figure 11B, C). Evidently, growth is prone to speed up and slow down as it 349 

ramps up to its eventual maximum.  350 

 Are these growth rate transients related to mechanisms that position the rootward 351 

boundary of the zone of elongation? Positioning the boundary and growth rate transients might 352 

be independent phenomena. Alternatively, the mechanism siting the boundary might home in on 353 

the desired position by using feedback from external signals, prompting first a growth rate 354 

increase and then a decrease. In this view, the loss of information from the shoot would alter the 355 

poise between these opposing impulses. We favor the mechanistic link because the growth rate 356 

transients are large and the two processes are spatially congruent.  357 

 358 

 Role of the shoot in the growth dynamics of the root  359 

 When the shoot is removed, growth changes in two phases. In the first, which lasts less 360 

than two hours, nearly every feature of growth dynamics changes. In the second phase, which 361 

lasts for at least a day, growth dynamics resemble those of intact plants, except that the position 362 
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of the elongation zone moves steadily rootward. In both phases, the responses presumably 363 

happen because the roots lose something provided by shoot, but for each phase the missing 364 

material might be distinct.  365 

 Based on its speed, the first phase could be triggered by the abrupt release of tension in 366 

the xylem and the consequent upward surge in water potential. Within minutes, removing the 367 

shoot changes turgor pressure in cortical cells (Zimmermann et al., 1992; Rygol et al., 1993) and 368 

decreases aquaporin expression and hydraulic conductivity (Vandeleur et al., 2014; Meng et al., 369 

2016). What’s more, following excision, aquaporins and conductivity decrease even when the 370 

phloem has been stopped beforehand by girdling (Vandeleur et al., 2014) but stay constant when 371 

xylem cells at the cut root stump are connected to a pump and put in tension (Meng et al., 2016). 372 

Nevertheless, factors that govern water transport from the root to the shoot (summed up in root 373 

hydraulic conductivity) probably are distinct from those governing growth at the root tip. Indeed, 374 

root tip velocity decreases rapidly (similar to the kinetics seen here) when A. thaliana leaves are 375 

wounded carefully to keep the xylem intact; and the velocity decreases even more when such 376 

wounds are laced with bacteria (Schmidt et al., 2010). These results imply that the initial rapid 377 

changes in root growth are not necessarily explained directly by lost xylem tension.     378 

 About two hours after shoot removal, growth parameters become stable, but the balanced 379 

back-and-forth movement of the x-intercept changes to favor a net movement toward the root tip, 380 

a movement that continues for at least a day and shortens the apparent meristem. Likewise, the 381 

elongation zone becomes shorter, as seen by velocity profiles at 24 h after shoot removal 382 

reaching a plateau within the microscope’s field of view (Figures 7C, S7). Evidently, without a 383 

shoot, both boundaries of the elongation zone move rootward. Although the changes during the 384 

second phase could be a root-based response to lost xylem tension, we hypothesize that the 385 

position of the boundaries is influenced by a signal transmitted from the shoot.  386 

 What is the signal? One possibility is sucrose, which reaches the root through the phloem 387 

and in addition to being a substrate often acts as a signal (Ruan, 2014). In our experiments, 388 

sucrose (1%) is present in the medium; when the sucrose is omitted, shoot removal stops root 389 
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growth entirely within an hour or two, suggesting that sucrose is taken up by shoot-less roots 390 

(MacGregor et al., 2008). However, sucrose entering the root via the epidermis might send a 391 

distinct signal compared to sucrose unloaded from the phloem.  392 

 Instead, the signal might be auxin, a compound known to influence almost every aspect 393 

of plant physiology. Oscillations in auxin signaling drive the formation of lateral roots (De Smet 394 

et al., 2007; Moreno-Risueno et al., 2010; Xuan et al., 2015) although their period is 4 hours or 395 

more, longer than the ~1.5 h seen here. We sought to determine whether auxin could mimic the 396 

presence of a shoot and maintain balanced movement of the x-intercept. Applying auxin to the 397 

cut stump and assaying root elongation over several days, we reasoned that an excessive 398 

concentration would inhibit growth strongly whereas a suitable concentration would be at the 399 

threshold for inhibition. Contrary to our reasoning and in contrast to previous results (e.g., Reed 400 

et al., 1998; Fu and Harberd, 2003), the auxin did nothing to root growth, regardless of 401 

concentration and of whether auxin was applied in agar or lanolin or onto cut or intact plants (at 402 

the root-shoot junction). Likewise, auxin added to the stump failed to decrease fluorescence at 403 

the root tip from the DII-Venus reporter. Auxin has been reported to need the phloem to move 404 

effectively from shoot to root (Bishopp et al., 2011) and sometimes moves to a limited extent in 405 

intact plants (Chen et al., 2014). Be that as it may, we were unable to test auxin involvement 406 

experimentally.  407 

 Another candidate signal is cytokinin, because this hormone regulates the size of the 408 

meristem (Takatsuka and Umeda, 2014; Gu et al., 2018); however, cytokinin typically represses 409 

the size of the meristem, as seen for example by exogenous cytokinin shrinking the meristem 410 

(Beemster and Baskin, 2000) and by loss of cytokinin responsiveness enlarging it (Dello Ioio et 411 

al., 2008, 2012). What’s more, meristem size is unchanged when cytokinin reaching the root is 412 

limited by a cytokinin oxidase expressed specifically in the phloem (Bishopp et al., 2011). 413 

Apparently, the cytokinin used for sizing the meristem is internal to the root.  414 

 Besides auxin, hormones that positively regulate the size of the meristem include 415 

gibberellin and brassino-steroid (Band et al., 2012; Wei et al., 2016). Loss of either could be 416 
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expected to shorten the meristem. However, in addition, both of these hormones positively 417 

regulate elemental (“cell”) elongation rate. Insofar as roots without shoots recover their 418 

elemental elongation rate (as indicated by m2) to precut levels (Table 1; Figure S11), neither of 419 

these hormones are straightforward candidates.  420 

 The final possibility to consider are signals carried by ions such as action potentials or 421 

calcium waves (Choi et al., 2017; Toyota et al., 2018). While wounding generates such signals 422 

avidly, the implication here is that the signal is present continuously in intact plants, adjusting 423 

the position where constant elemental elongation rate is attained. Discovering the signal that 424 

propagates stably through the plant to convey information influencing root growth dynamics 425 

stands as a challenge for the future.  426 

 427 

Limitations of the study 428 

 As discussed above, we identify three limitations. 1: The velocity profiles contain high-429 

frequency noise and we do not know whether the noise originates from technology (e.g., 430 

vibrations) or biology (e.g., cytoplasmic streaming). 2: The shootward boundary of the 431 

elongation zone was not imaged and we do not know whether this boundary moves together with, 432 

or independently of, the rootward boundary. 3: The rootward boundary of the elongation zone is 433 

positioned with input from the shoot but we do not know the nature of this input.  434 
  435 
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Figure legends 593 

Figure 1.  Root growth dynamics at steady-state. In the laboratory frame (left), where growth 594 

pushes the tip downward, the boundaries (orange lines) between zones move, keeping pace with 595 

the root tip. In this frame, the boundaries pass by cells (blue and red ovals) and by the spatial 596 

coordinates (mustard-colored scale). In the root-tip frame (right), where growth apparently 597 

pushes material upwards, the boundaries remain at the same coordinates and are traversed by 598 

cells. The tip (in fact, the quiescent center) is assigned x = 0. Reference values (microns) on the 599 

scale are approximate.  600 

 601 

Figure 2. Velocity profiles for one root. A: 37 velocity profiles, one every 5 min over 3 h. For 602 

other roots, see Figure S1. B: Standard deviation versus position of the 37 velocity values shown 603 

in A. C: Difference between the raw datum and the mean (i.e., the residual) versus position for 604 

the 37 profiles shown in A.   605 

 606 

Figure 3. Principal component analysis. A: Amount of the total variance explained by each of 607 

the first 37 components. Open circles plot mean ± standard deviation (when larger than the 608 

symbol) for the 35 intact roots. B: Plot of the first three component scores versus time for a 609 

single root. For other roots, see Figure S2. C: Outcome of runs test for non-randomness of the 610 

first three components. Roots 1 - 12 are from Nottingham.  611 

 612 

Figure 4. Parameterization of the velocity profile. A: The parameter Trx is found as the x-613 

coordinate of the intersection of the two best-fitted regression lines (red) to the raw data (black, 614 

velocity profile) for a single time point. B: The slopes m1 and m2 are found by centering a 300 615 

µm window at Trx and then fitting lines to the data on either side (red). Finally, x-int is found 616 

from the x-coordinate of the intersection of the velocity profile with a reference velocity 617 

(horizontal blue dotted line). The reference is obtained for a given root as the y-coordinate of the 618 

midpoint of the average regression interval used to find m2.  C: Parameter time courses.  619 
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Parameters for each root were averaged over time, expressed as a percentage of the mean, and 620 

then translated horizontally so that each curve would start at 100. The tip velocity parameter is 621 

measured directly by Stripflow along with the velocity profile. The time-course for m1 is omitted 622 

for clarity. Sample size = 35. Parameters (including m1) are plotted as absolute values in Fig’s 623 

S10 and S11.  624 

 625 

Figure 5. Correlations among key parameters. A and C: values of the correlation coefficient 626 

(R) for the indicated parameter pairs for intact (A) and 2 h cut (C) roots.  Numbers above the 627 

symbols give mean ± SD of the R
2 

value. B and D: Squares of the correlation coefficient (R
2
) for 628 

the indicated parameters versus the first principal component for intact (B) and 2 h cut (D). Each 629 

symbol represents a root. Comparable data for 24 h cut are shown in Figure S7.  630 

 631 

Figure 6. Comparison of the time course for principal component 1 score and x-int for a 632 

single intact root. Data for all intact roots shown in Figure S3. 633 

 634 

Figure 7. Shoot removal. A: All 37 velocity profiles for a root following shoot removal, with 635 

imaging started 2 h after removing the shoot (“2 h cut”). All replicate roots shown in Figure S5. 636 

B: Parameter time courses for the 2 h cut roots, plotted as for Figure 4. Sample size = 17. C: All 637 

37 velocity profiles for a root following shoot removal, with imaging started 24 h after removing 638 

the shoot (“2 h cut”). All replicate roots shown in Figure S7. D: Parameter time courses for the 639 

24 h cut roots, plotted as for Figure 4. Sample size = 12. Absolute parameter values are plotted in 640 

Fig’s S10 and S11. 641 

 642 

Figure 8. Comparison of the time course for principal component 1 and x-int for a single 2 h 643 

cut root. Data for all 2 h cut roots shown in Figure S5. 644 

 645 
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Figure 9. Growth dynamics with imaging started immediately after shoot removal (“zero h 646 

cut”). A : All 37 velocity profiles. B: Parameter time courses, plotted as in Figure 4, but with the 647 

scale reduced to accommodate the large changes. Sample size = 12. Parameters are plotted as 648 

absolute values in Fig’s S10 and S11 C: Same data as in B, but shown on a scale similar to that 649 

of Figure 4 and translated so that the curves all equal 100% at 120 min.  650 

 651 

Figure 10. Analysis of x-int steps for intact and 2 h cut seedlings. The step size is the 652 

difference between successive (i.e., every 5 min) values.  A: Frequency distribution. Symbols 653 

plot mean for each root ± 95% confidence interval. Numerical values show mean ± SD for all 654 

steps in the treatment. B, C: Cumulative distributions. For each root, steps were sorted from 655 

largest negative to largest positive and then averaged over each rank (i.e., the smallest steps were 656 

averaged, then the next-smallest, and so on). B: Average step size of each rank ± 95% 657 

confidence interval. C: The difference (2 h cut - intact) for the data in B. Total roots: n = 35 for 658 

intact, 17 for 2 h cut; total steps: n = 1269 for intact; n = 612 for 2 h cut.  659 

 660 

Figure 11. Temporal analysis for the root of an intact seedling. A: Position-trajectories. The 661 

end of the black trajectory is at the position where the red one starts; the end of the red trajectory 662 

is where the blue one starts. B: Elemental elongation rate as a function of time for the three 663 

trajectories. Plots for all intact roots in Figure S12. C: Elemental elongation rate as a function of 664 

position for the three trajectories. Plots for all intact roots in Figure S13.  665 
  666 
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 667 

Table 1 668 
 669 
Average root-growth parameters  670 
 671 
 672 
Treatment Tip velocity 

  µm / min 
     m1 
   % / h 

     Trx 
     µm 

    m2 
  % / h 

   x-int 
    µm 

      
Intact plants      

Nottingham   8.3 ± 2 5.7 ± 0.9 40 ± 4.6 553 ± 51 915 ± 44 
Amherst   5.5 ± 1.1 5.6 ± 0.6 34 ± 4.3 532 ± 42 979 ± 90 

      
All    7.3 ± 2.2 5.7 ± 0.8 38 ± 5.3 548 ± 51 957 ± 82 

      
Shoot removed      

0 h   4.9 ± 1 4.3 ± 0.8 31 ± 2.7 474 ± 73 1028 ± 92 
2 h   4.7 ± 0.8 3.1 ± 0.7 32 ± 3.2 540 ± 65   888 ± 76 

24 h   3.6 ± 0.8 4.6 ± 1 37 ± 3.2 273 ± 63   503 ± 82 
      
Data are mean ± SD, with n = 12 (Nottingham),  23 (Amherst), 35 (All), 17 (2 h), 12 (24 h), and 673 

12 (0 h). For Shoot removed, the times given are the times between shoot removal and the start 674 

of imaging, except for 0 h where approximately 2 min elapsed between cutting and imaging 675 

onset. 676 
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Highlights 
 
• For arabidopsis roots, the distribution of elongation is stable over several hours. 
 
• The position of the elongation zone saltates (moving ± 17 µm on average over 5 min).  
 
• After shoot excision, saltation continues with a net movement towards the tip. 
 
• The elongation zone may be sited by a feedback mechanism, with input from the shoot.  
 
 


