242 research outputs found

    Long term productivity and collaboration in information science

    Get PDF
    This is an accepted manuscript of an article published by Springer in Scientometrics on 02/07/2016, available online: https://doi.org/10.1007/s11192-016-2061-8 The accepted version of the publication may differ from the final published version.Funding bodies have tended to encourage collaborative research because it is generally more highly cited than sole author research. But higher mean citation for collaborative articles does not imply collaborative researchers are in general more research productive. This article assesses the extent to which research productivity varies with the number of collaborative partners for long term researchers within three Web of Science subject areas: Information Science & Library Science, Communication and Medical Informatics. When using the whole number counting system, researchers who worked in groups of 2 or 3 were generally the most productive, in terms of producing the most papers and citations. However, when using fractional counting, researchers who worked in groups of 1 or 2 were generally the most productive. The findings need to be interpreted cautiously, however, because authors that produce few academic articles within a field may publish in other fields or leave academia and contribute to society in other ways

    High Prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae Detected in the Human Gut Using an Improved DNA Detection Protocol

    Get PDF
    Background: The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool. Methodology/Principal Findings: Stool specimens collected from 700 individuals were filtered, mechanically lysed twice, and incubated overnight with proteinase K prior to DNA extraction using a commercial DNA extraction kit. Total DNA was used as a template for quantitative real-time PCR targeting M. smithii and M. stadtmanae 16S rRNA and rpoB genes. Amplification of 16S rRNA and rpoB yielded positive detection of M. smithii in 95.7% and M. stadtmanae in 29.4% of specimens. Sequencing of 16S rRNA gene PCR products from 30 randomly selected specimens ( 15 for M. smithii and 15 for M. stadtmanae) yielded a sequence similarity of 99-100% using the reference M. smithii ATCC 35061 and M. stadtmanae DSM 3091 sequences. Conclusions/Significance: In contrast to previous reports, these data indicate a high prevalence of the methanogens M. smithii and M. stadtmanae in the human gut, with the former being an almost ubiquitous inhabitant of the intestinal microbiome

    Expression Profiling of Autism Candidate Genes during Human Brain Development Implicates Central Immune Signaling Pathways

    Get PDF
    The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia—in addition to neurons—deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways

    Trust and Reciprocity: Are Effort and Money Equivalent?

    Get PDF
    Trust and reciprocity facilitate cooperation and are relevant to virtually all human interactions. They are typically studied using trust games: one subject gives (entrusts) money to another subject, which may return some of the proceeds (reciprocate). Currently, however, it is unclear whether trust and reciprocity in monetary transactions are similar in other settings, such as physical effort. Trust and reciprocity of physical effort are important as many everyday decisions imply an exchange of physical effort, and such exchange is central to labor relations. Here we studied a trust game based on physical effort and compared the results with those of a computationally equivalent monetary trust game. We found no significant difference between effort and money conditions in both the amount trusted and the quantity reciprocated. Moreover, there is a high positive correlation in subjects' behavior across conditions. This suggests that trust and reciprocity may be character traits: subjects that are trustful/trustworthy in monetary settings behave similarly during exchanges of physical effort. Our results validate the use of trust games to study exchanges in physical effort and to characterize inter-subject differences in trust and reciprocity, and also suggest a new behavioral paradigm to study these differences

    Dichotomy of Tyrosine Hydroxylase and Dopamine Regulation between Somatodendritic and Terminal Field Areas of Nigrostriatal and Mesoaccumbens Pathways

    Get PDF
    Measures of dopamine-regulating proteins in somatodendritic regions are often used only as static indicators of neuron viability, overlooking the possible impact of somatodendritic dopamine (DA) signaling on behavior and the potential autonomy of DA regulation between somatodendritic and terminal field compartments. DA reuptake capacity is less in somatodendritic regions, possibly placing a greater burden on de novo DA biosynthesis within this compartment to maintain DA signaling. Therefore, regulation of tyrosine hydroxylase (TH) activity may be particularly critical for somatodendritic DA signaling. Phosphorylation of TH at ser31 or ser40 can increase activity, but their impact on L-DOPA biosynthesis in vivo is unknown. Thus, determining their relationship with L-DOPA tissue content could reveal a mechanism by which DA signaling is normally maintained. In Brown-Norway Fischer 344 F1 hybrid rats, we quantified TH phosphorylation versus L-DOPA accumulation. After inhibition of aromatic acid decarboxylase, L-DOPA tissue content per recovered TH protein was greatest in NAc, matched by differences in ser31, but not ser40, phosphorylation. The L-DOPA per catecholamine and DA turnover ratios were significantly greater in SN and VTA, suggesting greater reliance on de novo DA biosynthesis therein. These compartmental differences reflected an overall autonomy of DA regulation, as seen by decreased DA content in SN and VTA, but not in striatum or NAc, following short-term DA biosynthesis inhibition from local infusion of the TH inhibitor α-methyl-p-tyrosine, as well as in the long-term process of aging. Such data suggest ser31 phosphorylation plays a significant role in regulating TH activity in vivo, particularly in somatodendritic regions, which may have a greater reliance on de novo DA biosynthesis. Thus, to the extent that somatodendritic DA release affects behavior, TH regulation in the midbrain may be critical for DA bioavailability to influence behavior

    Comprehensive Brain MRI Segmentation in High Risk Preterm Newborns

    Get PDF
    Most extremely preterm newborns exhibit cerebral atrophy/growth disturbances and white matter signal abnormalities on MRI at term-equivalent age. MRI brain volumes could serve as biomarkers for evaluating the effects of neonatal intensive care and predicting neurodevelopmental outcomes. This requires detailed, accurate, and reliable brain MRI segmentation methods. We describe our efforts to develop such methods in high risk newborns using a combination of manual and automated segmentation tools. After intensive efforts to accurately define structural boundaries, two trained raters independently performed manual segmentation of nine subcortical structures using axial T2-weighted MRI scans from 20 randomly selected extremely preterm infants. All scans were re-segmented by both raters to assess reliability. High intra-rater reliability was achieved, as assessed by repeatability and intra-class correlation coefficients (ICC range: 0.97 to 0.99) for all manually segmented regions. Inter-rater reliability was slightly lower (ICC range: 0.93 to 0.99). A semi-automated segmentation approach was developed that combined the parametric strengths of the Hidden Markov Random Field Expectation Maximization algorithm with non-parametric Parzen window classifier resulting in accurate white matter, gray matter, and CSF segmentation. Final manual correction of misclassification errors improved accuracy (similarity index range: 0.87 to 0.89) and facilitated objective quantification of white matter signal abnormalities. The semi-automated and manual methods were seamlessly integrated to generate full brain segmentation within two hours. This comprehensive approach can facilitate the evaluation of large cohorts to rigorously evaluate the utility of regional brain volumes as biomarkers of neonatal care and surrogate endpoints for neurodevelopmental outcomes

    Denial of Reward in the Neonate Shapes Sociability and Serotonergic Activity in the Adult Rat

    Get PDF
    BACKGROUND: Manipulations of the early environment are linked to long-lasting alterations of emotionality and social capabilities. Denial of rewarding mother-pup interactions in early life of rats could serve as model for child neglect. Negative consequences for social competence in later life, accompanied by changes in the serotonergic system would be expected. In contrast, rewarding mother-pup contact should promote adequate social abilities. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats trained in a T-maze during postnatal days 10-13 under denial (DER) or permission (RER) of maternal contact were tested for play behavior in adolescence and for coping with defeat in adulthood. We estimated serotonin (5-HT) levels in the brain under basal conditions and following defeat, as well as serotonin receptor 1A (5-HT1A) and serotonin transporter (SERT) expression. DER rats exhibited increased aggressive-like play behavior in adolescence (i.e. increased nape attacks, p<0.0001) and selected a proactive coping style during defeat in adulthood (higher sum of proactive behaviors: number of attacks, flights, rearings and defensive upright posture; p = 0.011, p<0.05 vs RER, non-handled-NH). In adulthood, they had lower 5-HT levels in both the prefrontal cortex (p<0.05 vs RER) and the amygdala (p<0.05 vs NH), increased 5-HT levels following defeat (PFC p<0.0001) and decreased serotonin turnover (amygdala p = 0.008). The number of 5-HT1A immunopositive cells in the CA1 hippocampal area was increased (p<0.05 DER, vs RER, NH); SERT levels in the amygdala were elevated (p<0.05 vs RER, NH), but were lower in the prefrontal cortex (p<0.05 vs NH). CONCLUSIONS/SIGNIFICANCE: Denial of expected maternal reward early in life negatively affects sociability and the serotonergic system in a complex manner. We propose that our animal model could contribute to the identification of the neurobiological correlates of early neglect effects on social behavior and coping with challenges, but also in parallel with the effects of a rewarding early-life environment

    The neurobiology of mouse models syntenic to human chromosome 15q

    Get PDF
    Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.

    Get PDF
    BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme
    corecore