216 research outputs found

    Observer dependent D-brane for strings propagating in pp-wave time dependent background

    Full text link
    We study type IIB superstring in the pp-wave time-dependent background, which has a singularity at t=0t=0. We show that this background can provide a toy model to study some ideas related to the stretched horizon paradigm and the complementary principle of black holes. To this end, we construct a unitary Bogoliubov generator which relates the asymptotically flat string Hilbert space, defined at t=±t =\pm \infty, to the finite time Hilbert space. For asymptotically flat observers, the closed string vacuum close to the singularity appears as a boundary state which is in fact a D-brane described in the closed string channel. However, observers who go with the string towards to the singularity see the original vacuum.Comment: 12 pages, revtex 4, added references, corrected mistake

    Noncommutative Topological Half-flat Gravity

    Full text link
    We formulate a noncommutative description of topological half-flat gravity in four dimensions. BRST symmetry of this topological gravity is deformed through a twisting of the usual BRST quantization of noncommutative gauge theories. Finally it is argued that resulting moduli space of instantons is characterized by the solutions of a noncommutative version of the Plebanski's heavenly equation.Comment: 12+1 pages, revtex4, no figure

    Photon CT Scanning of Advanced Ceramic Materials

    Get PDF
    Advanced ceramic materials (e. g. Si3N4, ZrO2, SiC, A12O3) are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems [1]. Although fracture toughness has been a constant problem, advanced ceramics are now being developed with fracture toughnesses close to those of metals [2]. Small size flaws (10–200 μm), small non-uniformities in density distributions (0.1–2%) present as long-range density gradients, and porous regions which can be seen as localized areas of slightly lower density, are critical in most ceramics. The need to detect these small flaws is causing a significant effort to be devoted towards nondestructive evaluation. Detection of “defects” such as those noted in engineering ceramics has presented problems for conventional non-destructive evaluation methods [3]

    Toward sustainable environmental quality : priority research questions for Europe

    Get PDF
    The United Nations' Sustainable Development Goals have been established to end poverty, protect the planet, and ensure prosperity for all. Delivery of the Sustainable Development Goals will require a healthy and productive environment. An understanding of the impacts of chemicals which can negatively impact environmental health is therefore essential to the delivery of the Sustainable Development Goals. However, current research on and regulation of chemicals in the environment tend to take a simplistic view and do not account for the complexity of the real world, which inhibits the way we manage chemicals. There is therefore an urgent need for a step change in the way we study and communicate the impacts and control of chemicals in the natural environment. To do this requires the major research questions to be identified so that resources are focused on questions that really matter. We present the findings of a horizon-scanning exercise to identify research priorities of the European environmental science community around chemicals in the environment. Using the key questions approach, we identified 22 questions of priority. These questions covered overarching questions about which chemicals we should be most concerned about and where, impacts of global megatrends, protection goals, and sustainability of chemicals; the development and parameterization of assessment and management frameworks; and mechanisms to maximize the impact of the research. The research questions identified provide a first-step in the path forward for the research, regulatory, and business communities to better assess and manage chemicals in the natural environment. Environ Toxicol Chem 2018;9999:1-15

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    corecore