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Integrating sequence and array data to create
an improved 1000 Genomes Project haplotype
reference panel
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A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-

wide association studies (GWAS). Here we develop a method to estimate haplotypes from

low-coverage sequencing data that can take advantage of single-nucleotide polymorphism

(SNP) microarray genotypes on the same samples. First the SNP array data are phased to

build a backbone (or ‘scaffold’) of haplotypes across each chromosome. We then phase the

sequence data ‘onto’ this haplotype scaffold. This approach can take advantage of relatedness

between sequenced and non-sequenced samples to improve accuracy. We use this method

to create a new 1000GP haplotype reference set for use by the human genetic community.

Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes

have lower genotype discordance and improved imputation performance into downstream

GWAS samples, especially at low-frequency variants.
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O
ver the last few years the use of next generation
sequencing technologies has lead to new insights in both
population and disease genetics, by providing a more

complete characterization of DNA sequences than is possible
using genome-wide micro arrays. However, high coverage
sequencing in large cohorts is still prohibitively expensive, and
an experimental design involving low-coverage sequencing has
become popular. For example, the 1000 Genomes Project
(1000GP) is using 4� coverage sequencing of B2,500 samples
from a diverse set of worldwide populations1. A consequence of
the low-coverage sequencing is that some genotypes are only
partially observed, and directly calling genotypes one site at a
time can lead to low-quality call rates2.

The current paradigm for detecting, genotyping and phasing
polymorphic sites from low-coverage sequence data starts by
mapping sequence reads to a reference genome. Mapped reads
that overlap a given site in a single individual are then combined
together to form genotype likelihoods (GLs). Genotype like-
lihoods are the probabilities of observing the reads given the
underlying (unknown) genotypes at each site.

Improved call rates can be achieved by aggregating information
across many samples through the use of phasing methods that
estimate the underlying haplotypes of the study samples.
Inference of the underlying haplotypes dictates the genotype
calls of each sample. This builds on the idea that over small
genomic regions, the samples will share haplotypes due to local
genealogical relationships, leading to a per-haplotype coverage
much higher than the per-individual coverage.

To achieve this haplotype phasing and genotype calling, the
hidden Markov model (HMM)-based phasing methods that were
primarily designed to estimate haplotypes from single-nucleotide
polymorphism (SNP) array data were adapted to deal with
sequencing data. For example, the 1000GP phase 1 set of
haplotypes from 1,092 individuals was estimated using a
combination of Beagle3 and MaCH/Thunder4. Such haplotype
reference panels are now routinely used to impute unobserved
genotypes in genome-wide association studies (GWAS), as this
increases power to detect and resolve associated variants and
facilitates meta-analysis5.

Our recent research suggests that the SHAPEIT2 method is
currently the most accurate method for phasing sets of known
genotypes. The method uses a similar HMM to approaches
such as Impute2 (ref. 6) and MaCH. A key feature of the method
is that the HMM calculations are linear in the number of
haplotypes being estimated, whereas Impute2 and MaCH scale
quadratically. The method uses a unique approach that represents
the space of all possible haplotypes consistent with an individual’s
genotype data in a graphical model. A pair of haplotypes
consistent with an individual’s genotypes are represented as a
pair of paths through this graph, with constraints to ensure
consistency that are easy to apply due to the model structure. For
this reason SHAPEIT2 is among the most computationally
tractable methods7,8.

Here we present a new version of SHAPEIT2 that estimates
haplotypes from GLs generated by low-coverage sequencing data.
In addition, our new method can also take advantage of SNP
microarray genotypes on the same samples. The majority of the
B2,500 1000GP sequenced samples have been genotyped on
either the Illumina Omni 2.5 or Affymetrix 6.0 microarray, as
well as an additional set of 1,198 unsequenced samples, many of
whom are close relatives of the B2,500 sequenced samples. Our
overall approach has two steps: first the SNP array data are
phased to build a backbone of haplotypes across each chromo-
some, which we refer to as the scaffold. Second, we take GL data
at sequenced variant sites, and jointly phase this data ‘onto’ this
haplotype scaffold.

The first advantage of this approach is that the relatedness
between the extended set of genotyped samples leads to a very
accurate phased scaffold. For the analysis in the paper, this set
included 392 mother–father–child trios, 30 parent–child duos
and 905 nominally unrelated samples. The phasing of trios and
duos is expected to be highly accurate due to the Mendelian
constraints on the underlying haplotypes. The phasing of the
unrelated samples will benefit from being phased together with
these trios and duos. The second advantage is that the phasing of
the GL data onto the scaffold is carried out in chunks. As the
variants in each region are phased ‘onto’ the scaffold, no further
work is needed to combine the regions together. As such, the
method is highly parallelizable. This approach generalizes our
MVNcall9, approach which is designed to phase one variant site
at a time onto a haplotype scaffold, and improves upon its
accuracy, by phasing multiple sites jointly onto the scaffold and
using a more sophisticated underlying model.

Our method is unique in its ability to phase GL data at multiple
sites jointly, together with a phased scaffold at a subset of sites.
Methods such as Beagle3 and MaCH/Thunder4 could be made
to accept a scaffold of unphased genotypes, by recoding the
genotypes as sequenced variants at very high coverage. However,
our two-stage approach allows valuable family information to be
used in phasing the scaffold.

Results
To demonstrate the benefits of this new method, we applied it to
the 1000GP phase 1 sequence data to produce new haplotypes.
We then compared these haplotypes with the existing set of
1000GP phase 1 haplotypes, and also to a set of haplotypes
produced by Beagle. In all the experiments, we used the set of GLs
available on the FTP website for 1,092 phase 1 samples. These
consist of GLs at 36,820,992 SNPs, 1,384,273 bi-allelic indels and
14,017 structural variations (SVs). To create the haplotype
scaffold (Omni 2.5 M), we used Illumina Omni 2.5 genotypes
available on 2,141 samples and 2,368,234 SNPs. We phased this
data set using the existing version of SHAPEIT2 (r644).
Supplementary Table 1 shows the number of trios, duos and
unrelated samples in each of the 14 populations. To mimic the
use of a sparser haplotype scaffold, we also created a new scaffold
by thinning the Omni scaffold down to 1,000,000 SNPs (1 M). We
then phased the GL data set on chromosome 20 in three different
ways using (a) the Omni 2.5 M scaffold, (b) the 1 M scaffold, (c)
no scaffold.

We evaluated the quality of the different sets of haplotypes by
looking at the concordance of the inferred genotypes to validation
sets of SNP and indel genotypes. We used two validation data sets
derived from Complete Genomics (CG) sequencing: a set of
publicly available genotypes on 69 samples (CG1), and a larger set
of 250 individuals sequenced for the purposes of 1000GP
validation (CG2). Both of these data sets contain accurate
genotypes that were derived from high coverage (B80� ), and
show enough overlap in variants and samples with phase 1 for
relevant genotype discordance analysis. Supplementary Tables 2
and 3 show the overlap between the CG and 1000GP data sets in
terms of samples and variant sites, respectively.

Figure 1a shows the genotype discordance at CG1 SNPs. We
measure discordance using just the validation genotypes that
contain at least one copy of the non-reference allele (ALT) and all
validation genotypes (ALL). These results show that the three
haplotype sets produced by SHAPEIT2 (blue bars) have lower
levels of discordance compared with Beagle haplotypes (green)
and the 1000GP haplotypes (orange). For example, the CG1 ALT
discordance of the SHAPEIT2 haplotypes made using the Omni
2.5 scaffold, and the ALT discordance of the 1000GP haplotypes,
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are 1.03 and 1.38%, respectively. In addition, we observe that the
Omni 2.5 scaffold produced better results than the 1 M scaffold,
which is in turn better than using no scaffold. Figure 2a,b shows
the genotype discordance at CG2 SNPs and indels, where we
observe the same pattern of performance between methods. We
also find that this pattern holds across different ancestries
(Supplementary Fig. 1). The discordance on indels is worse than
on SNPs (Fig. 2c). A reason for this difference may be that it is

more challenging to map sequencing reads that contain indels, so
the GLs for indels may be less informative than GLs at SNPs.

We also used the CG samples not included in phase 1 to assess
the quality of the estimated haplotypes when used as a reference
panel for GWAS imputation5,10. We divided the CG1 sites into
those on the Illumina 1 M SNP array, and then used these
together with the different haplotype sets to impute the CG1
genotypes not on the array. We then measured the imputation
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Figure 1 | Methods comparison of genotype discordance and imputation accuracy using the CG1 data. (a) Shows the discordance at chr20 CG1

SNP genotypes of Beagle (green), Thunder (orange) and SHAPEIT2 without using a scaffold (light blue), using a 1 M SNPs haplotype scaffold (medium

blue) and using a 2.5 M SNPs haplotype scaffold (dark blue). ALT stands for the discordance at genotypes involving at least one non-reference allele, and

ALL for the overall discordance. (b) Shows the performance of the previous call sets when used as a reference panel to impute four CG1 European samples

genotyped on Illumina 1 M SNP array. The x axis shows the non-reference allele frequency of the SNP being imputed. The y axis shows imputation accuracy

measure by aggregate R2.
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Figure 2 | Methods comparison of genotype discordance and imputation accuracy using the CG2 data. (a) Shows the whole genome genotype

discordance of Beagle (green), Thunder (orange) and SHAPEIT2 using a 2.5 M SNPs haplotype scaffold (dark blue) at CG2 SNPs. (b) Shows the

performance of the three call sets to impute SNPs on chromosome 10 in 10 CG2 European samples typed on Illumina 1 M and Omni 2.5 M chips. The x axis

shows the non-reference allele frequency of the SNP being imputed. The y axis shows imputation accuracy measure by aggregate R2. (c) and

(d) show similar results than a and b, respectively for short bi-allelic indels instead of SNPs.
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accuracy against the CG1 genotypes. In the same way as previous
evaluations1, we stratified SNPs and indels by their non-reference
allele frequency in the 1000GP haplotypes so that each site is
always assigned to the same frequency bin in the results. For each
SNP or indel, we measured the R2 of the imputed dosage
estimates with the validation genotypes. Figure 1b plots the non-
reference allele frequency versus R2 and shows that the use of
a haplotype scaffold clearly leads to an increase in R2 especially
at lower frequencies. For example, at 0.5% frequency, the
SHAPEIT2 haplotypes made with a 2.5 M scaffold increase R2

by 0.1 compared with the 1000GP phase 1 set of haplotypes. We
also find that using the 1 M scaffold produces almost identical
imputation performance to the 2.5 M scaffold. Running
SHAPEIT2 without a scaffold produces results intermediate to
those of the scaffolded haplotypes and the 1000GP phase 1 set of
haplotypes.

Figure 2c,d shows the imputation performance of SNPs and
indels, respectively when using the CG2 validation set. For this
experiment we carried out imputation using genotypes on the
Illumina 1 M and Omni 2.5 M chip. We also observe that
SHAPEIT2 haplotypes using the 2.5 M scaffold produce improved
imputation performance compared with the 1000GP phase 1 set
of haplotypes and the Beagle haplotypes, again independently of
the sample ancestry (Supplementary Fig. 2). As expected, using a
denser chip the imputation improves the results. At 1% frequency
SNPs, we find that the imputation from the SHAPEIT2 scaffold
reference haplotypes into genotypes on the Omni 2.5 M chip and
the Illumina 1 M chip produce R2 measures of 0.78 and 0.73,
respectively. Interestingly, imputation from the 1000GP phase 1
set of haplotypes into genotypes on the Omni 2.5 M chip
produces an R2¼ 0.73. This highlights the value of using a
scaffolded set of haplotypes. In terms of imputation performance,
the value of using a scaffold set of haplotypes is equivalent to the
use of a much denser SNP chip in the GWAS samples.

The indel imputation results in Fig. 2d show some differences
to the SNP imputation results at high frequencies, but are
otherwise broadly similar. We investigated this issue and
discovered that indels within 50 bp of another indel had
noticeable lower imputation accuracy than more isolated indels.
Figure 3 shows the imputation performance of indels stratified by

distance to another indel, together with the SNP imputation
results. This figure shows that isolated indels can be imputed with
very similar levels of accuracy to SNPs.

Discussion
Over the past year, the 1000 Genomes phase 1 haplotypes have
been extensively used in many genetic studies, most of the time as
reference panel to carry out GWAS imputation. In this paper, we
showed that using the SHAPEIT2 phasing model, and integrating
phased SNP array data, produces more accurate genotype and
haplotype estimates. Using the resulting haplotypes as reference
panel for GWAS imputation provides better prediction of
untyped variants at rare SNPs and indels across a range of
ancestries and SNP arrays. This highlights the potential of using
this new set of haplotypes in future GWAS studies. The new
haplotype reference set is available from the website ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/sha-
peit2_phased_haplotypes/ and our new methods are available
from the website http://www.stats.ox.ac.uk/Bmarchini/#software.

We expect that many other studies may be able to make use of
our approach to produce highly accurate haplotypes in their
samples. It is likely that many cohorts that undergo sequencing
will already have SNP microarray genotypes available. For
example, twin studies that have sequenced one individual from
each dizygotic twin pair, and also have genotype data on all
individuals, may benefit substantially from using our approach.
The phasing of the twins genotype data will be highly accurate in
regions of shared haplotypes, and this will help in genotype
calling and phasing of the sequence data. Studies which have
sequenced one individual from parent–child pairs will benefit in a
similar manner. The final version of the 1000GP haplotypes on all
of the B2,500 samples will be phased using our new approach.

We predict that further advances in haplotype accuracy are
possible. First, it has recently been shown by ourselves and others
that leveraging phase information in sequencing reads can lead to
improved genotype calls and haplotype sets with lower switch
error. In parallel work11, we have extended SHAPEIT2 to utilize
phase informative reads after genotypes have been called, and
have shown that this improves phasing accuracy. Other
authors12,13 have recently shown that joint inference of
genotypes and haplotypes can improve both genotype and
haplotype calls. However, it is yet to be determined how such
improvements translate into downstream imputation accuracy. It
is more likely that downstream imputation accuracy can be
improved by increasing sample size of the reference panel. Efforts
are now under way to create larger sets of haplotypes by
combining together many low-coverage sequencing studies http://
www.haplotype-reference-consortium.org/.

Methods
The phasing model for low-coverage sequence data. We wish to estimate the
haplotypes of N unrelated individuals with sequence data at L bi-allelic variants,
which could be either SNPs, indels or structural variants. Our new algorithm
extends the SHAPEIT2 model and the Markov chain Monte Carlo (MCMC)
method used to carry out inference from this model. We use a Gibbs sampling
scheme in which each individual’s haplotypes are sampled conditional upon the
sequence reads of the individual and the current estimates of all the other indi-
viduals. Thus it is sufficient for us to consider the details of a single iteration in
which we update the haplotypes of the ith individual. We use R to denote the
sequence data available for this individual and H to denote the current haplotype
estimates of other individuals being used in the iteration. We define the genotype
likelihood as the probability of observing the sequence data R at a particular site l
given the unobserved genotype Gl: P(R|Gl), where Gl¼ 0, 1, 2 counts the number of
non-reference alleles in the genotype. These GLs can be obtained using specialised
software like SAMtools14, SNPtools15 or GATK16 that derive these likelihoods
directly from the BAM files containing the sequence reads.

In each iteration we must sample a pair of haplotypes (h1, h2) for the ith
individuals given both R and H. To do so, we adapted the parsimonious
representation of the possible haplotypes of SHAPEIT to deal with GLs. We divide
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Figure 3 | Imputation accuracy at SNPs and indels using the CG2 data.
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the region being phased into a number, C, of consecutive non-overlapping
segments such that each segment contains eight possible haplotypes consistent with
the GLs. In the case of bi-allelic variants, it means that each segment spans three
sites, and we will see in the next section how this number can be increased. We use
SlA{1,y, C} to denote the segment that contains the lth SNP and bs and es to
denote the first site and the last site included in the sth segment, respectively. We
use Alb to denote the allele carried at the lth site by the bth consistent haplotype.
We can now represent a possible haplotype as a vector of labels X¼ {X1,y, XL}
where Xl denotes the label of the haplotype at the lth site in the Slth segment. The
segmentation implies that the labels are identical within each segment so that we
always have Xl¼Xl� 1 when Sl¼ Sl� 1. We use X{s} to define the label of the
haplotype across all sites residing in the sth segment. Moreover, we represent a pair
of haplotypes as a pair of vectors of labels (X1, X2). An illustration of this graph
representation of the possible haplotypes can be seen in Supplementary Fig. 3a.

Given the segment representation described above, sampling a diplotype (pair
of haplotypes) given a set of known haplotypes H and a set of sequencing reads R
involves sampling from the posterior distribution Pr(X1, X2|H, R). By assuming
first that the reads for the individual we are updating, R, are conditionally
independent of the haplotypes in other individuals, H, given the pair of haplotypes
(X1, X2) we can write

PðX1;X2 jH;RÞ / PðX1;X2;R;HÞ ð1Þ

/ PðR jX1;X2ÞPðX1;X2 jHÞ ð2Þ
This factorization involves a model of the diplotype given the observed

haplotypes, P(X1, X2|H) and for this we use the previously described SHAPEIT2
model8. The term P(R|X1, X2) is constructed from the GLs.

On the basis of the segmentation of the chromosome into C segments, we
employ a similar Markov model as the one introduced in the SHAPEIT2 method8.
It can be written as:

PðX1;X2 jH;RÞ ¼PðX1
f1g;X

2
f1g jH;RÞ

YC

s¼2

PðX1
fsg;X2

fsg j X1
fs� 1g;X

2
fs� 1g;H;RÞ

ð3Þ
The idea here is to sample first a diplotype for the first segment s¼ 1 from

PðX1
f1g;X2

f1g jH;RÞ and then for each successive segment from

PðX1
fsg;X

2
fsg jX1

fs� 1g;X2
fs� 1g;H;RÞ. The scheme we use is described by the

following steps:
1. A pair of haplotypes in the first segment with labels (i, j) is sampled with

probability proportional to PðX1
1 ¼ i;X2

1 ¼ j jH;RÞ.
2. While srC a pair of haplotypes (d, f) for the sth segment is sampled given the

previously sampled pair (i, j) for the {s� 1}th segment with probability
proportional to PðX1

fsg ¼ d;X2
fsg ¼ f jX1

fs� 1g ¼ i;X2
fs� 1g ¼ j;H;RÞ.

3. Set s¼ sþ 1.
4. If s¼Cþ 1 then stop, else go to step 2.
The result is a pair of vectors of haplotype labels, X1 and X2, across the whole

region being phased and these can be turned into new haplotype estimates, (h1, h2),
using hil ¼ AlXi

l
for iA{1, 2}. These haplotype estimates can then be added back

into the haplotype set H and the next individual’s haplotypes can be estimated,
although their current haplotype estimates must be removed from H first.

To carry out this Markov-based sampling, we need now to describe how to
obtain the two distributions PðX1

1 ¼ i;X2
1 ¼ j jH;RÞ and

PðX1
fsg ¼ d;X2

fsg ¼ f jX1
fs� 1g ¼ i;X2

fs� 1g ¼ j;H;RÞ. To do so, we decompose them
by using equations (1) and (2) as follows:

PðX1
f1g;X2

f1g jH;RÞ ¼PðR jX1
f1g;X2

f1gÞPðX1
f1g;X2

f1g jHÞ
PðX1

fsg;X2
fsg jX1

fs� 1g;X
2
fs� 1g;H;RÞ / PðX1

fsg;X
2
fsg;X1

fs� 1g;X
2
fs� 1g jH;RÞ

/ PðR jX1
fsg;X2

fsg;X
1
fs� 1g;X2

fs� 1gÞ
� PðX1

fsg;X2
fsg;X

1
fs� 1g;X2

fs� 1g jHÞ

ð5Þ

We use the SHAPEIT2 model for the terms PðX1
f1g;X2

f1g jHÞ and
PðX1

fsg;X
2
fsg;X1

fs� 1g;X2
fs� 1g jHÞ. We do not give more details here since

a complete description can be found in the SHAPEIT2 paper8. The GLs enter the
model in the term P(R|X1, X2) as a product over all L sites as

PðR jX1;X2Þ ¼
YL

l¼1

PðR jGl ¼ AlX1
l
þAlX2

l
Þ ð6Þ

which implies that

PðR jX1
f1g;X2

f1gÞ ¼
Ye1

l¼b1

PðR jX1
l ;X

2
l Þ ð7Þ

PðR jX1
fsg;X2

fsg;X
1
fs� 1g;X2

fs� 1gÞ ¼
Yes

l¼bs� 1

PðR jX1
l ;X2

l Þ ð8Þ

Initialization and MCMC iterations. The experience of the 1000GP analysis
group is that phasing approaches based on HMMs such as Thunder and Impute2

are slow to converge when applied to low-coverage sequence data if the starting
haplotype estimates are initialized randomly. It has been observed that the Beagle
method does not have this property, and that Thunder and Impute2 benefit from
using an initial set of haplotypes estimated via Beagle. The 1000GP phase 1 hap-
lotypes were estimated in this way by first running Beagle and then using these
haplotypes as initial estimates in the Thunder model1.

We initialize some of the genotypes by using the genotype posteriors P(Gl|H, R)
provided by the Beagle phasing model. Our approach relies on fixing the genotypes
with high posterior probabilities and then use our model to call all the remaining
genotypes (Supplementary Fig. 3b). Fixing highly confident genotypes is beneficial
as it implies additional constraints on the space of possible haplotypes. In practice,
segments then tend to contain more sites than in the default model: 32 sites on
average per segment when applied to 1000GP instead of only three sites if no
genotypes are fixed.

We empirically determined a threshold on the Beagle posteriors to fix genotypes
while maintaining relatively low discordance rates. This approach relies on the
Beagle posteriors being well calibrated. To do so, we defined a set of 23 different
threshold values ranging from 0.5 to 0.999 and measured for each (1) the
discordance between CG1 and genotypes with a posterior above the threshold and
(2) the percentage of genotypes with posteriors falling below the threshold
(Supplementary Fig. 4a,b). In addition, we also measured the proportion of
discordances of the full Beagle call set falling below each threshold value
(Supplementary Fig. 4c,d). From this experiment, we empirically determined that a
threshold value of 0.995 gives good performance: it implies that around 97% of the
genotypes can be directly fixed while maintaining a discordance against CG1 of
0.07% overall (ALL) and of 0.25% at genotypes involving at least one alternative
allele (ALT). We find that the 3% of the genotypes that we choose not to fix contain
over 80% of the genotypes found to be discordant. Thus it makes sense that these
are the genotypes that we try to improve upon using our model.

Our algorithm starts from the haplotype estimates produced by Beagle and
then, each MCMC iteration consists of updating the haplotypes of each sample
conditional upon a set of other haplotypes using the Markov model described in
section A. Our algorithm for GLs follows an iteration scheme quite different than
in the SHAPEIT2 algorithm described in Delaneau et al. (2012). Specifically, we
carry out several stages of pruning and merging iterations, instead of a single set of
pruning and merging. In practice, we use 12 stages of four iterations (¼ 48
iterations). We do not use burn-in iterations as we already have an initial estimate
provided by Beagle. Each pruning and merging stage is used to remove unlikely
states and transitions from the Markov model that describes the space of
haplotypes with each individual. When enough transitions are pruned we merge
adjacent segments together. This has the effect of simplifying the space of possible
haplotypes so that a final set of sampling iterations can be carried out more
efficiently. In practice, as we multiply these pruning and merging stages, the size of
the model (that is, the graphs) tend to converge as shown by the evolutions of the
number of sites per segment (Supplementary Fig. 5a) and the total number of
segments (Supplementary Fig. 5b).

Finally, to complete the model, we only use a subset of all available haplotypes
when updating each individual as done in SHAPEIT2. We used a carefully chosen
subset containing K1¼ 400 haplotypes that most closely match the haplotypes of
the individual being updated10. Note that the haplotype matching is carried out on
overlapping windows of size W¼ 0.1 Mb. Moreover, we also found useful to use an
additional set of K2¼ 200 randomly chosen haplotypes to help the mixing of the
MCMC. So in total, we used K¼ 600 conditioning haplotypes. Using such a large
number of conditioning haplotypes is facilitated as SHAPEIT2 has linear
complexity with K.

Using a haplotype scaffold. We denote as F the pair of haplotypes derived from
SNP array for the ith individual, now the goal is to sample a pair of haplotypes
from P(X1, X2|H, R, F) such that they are fully consistent with F. The scaffold F
imposes a set of hard constraints on the space of possible haplotypes generated by
the sampling scheme as illustrated in Supplementary Fig. 3c. So in the first segment
s ¼ 1 : PðX1

f1g;X2
f1g jH;R; FÞ ¼ PðX1

f1g;X2
f1g jH;RÞ when the pair of haplotypes

defined by ðX1
f1g;X

2
f1gÞ is fully consistent with F over the first segment, and 0

otherwise. Similarly, we define

PðX1
fsg;X2

fsg jX1
fs� 1g;X2

fs� 1g;H;R; FÞ ¼ PðX1
fsg;X

2
fsg

jX1
fs� 1g;X2

fs� 1g;H;RÞ ð9Þ

when the haplotype pair defined by ðX1
fsg;X2

fsg;X1
fs� 1g;X2

fs� 1gÞ is fully consistent
with F over the segments s and s� 1, and 0 otherwise. In practice, setting some of
the transition probabilities that are inconsistent with F to 0 between successive
segments means that it becomes impossible to sample haplotypes inconsistent with
F across the full set of L sites.

1000GP phase 1 low-coverage sequence data. We downloaded the GLs for
1,092 1000GP samples from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20110521/. This data set contains GLs for 36,820,992 SNPs, 1,384,273 short bi-
allelic indels and 14,017 SVs. The GLs for SNPs were computed using SNPtools15,
for indels using (ref. 16) and SVs using (ref. 17). We ran Beagle and SHAPEIT2 on

(4)
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the whole genome in chunks of 1.4 Mb with 0.2 Mb overlaps between flanking
chunks.

Beagle was run using 20 iterations instead of the 10 by default, otherwise, all
other default settings were used. SHAPEIT2 was run using 78 iterations: 12 stages
of 4 pruning iterations plus 30 main iterations. The estimation was carried out in
windows of size W¼ 0.1 Mb, using k¼ 600 conditioning haplotypes; 400 chosen
by Hamming distance and 200 chosen at random. All these computations were
done using an B1,000 CPU nodes cluster. SHAPEIT2 and Beagle required
B289 and B99 CPU months, respectively to phase the whole genome 1000GP
phase 1 data set.

The multi-threading property of SHAPEIT2 proved to be very convenient on
clusters with low memory nodes (for example, only 2–3 Gb of RAM per CPU core).
For instance, on a single 8 CPU node, it is much more memory efficient to
phase with SHAPEIT2 eight chunks of data sequentially each using eight threads
than running the eight chunks in parallel. Both strategies need roughly the
same running times whereas the second requires sharing of memory between the
eight chunks.

1000GP Illumina Omni 2.5 SNP array data. For the haplotype scaffold, we used
a set of 2,141 samples genotyped on Illumina Omni 2.5 M. This set of samples
includes all the 1000GP phase 1 samples. This data set contains some parent–child
duos and mother–father–child trios, and in some cases just a subset of each family
has been sequenced. Supplementary Table 1 gives details of sequenced and non-
sequenced samples. We found that 380 and 30 phase 1 1000GP sequenced samples
are part of trios and duos in this data set. SNPs with a missing data rate above 10%
and a Mendel error rate above 5% were removed, leaving a total of 2,368,234 SNPs
ready for phasing. We phased this data using SHAPEIT2 (r644) using all default
settings (W¼ 2 Mb, K¼ 100 haplotypes, iterations¼ 45) and using all available
family information. We used the resulting haplotypes as a scaffold to call the
variant sites in 1000GP. The whole genome overlap between both data sets contains
2,183,314 SNPs.

Complete Genomics (CG) validation data. As validation data, we used two
different data sets: the 69 genomes from Complete Genomics (CG1) and an
additional set of 250 samples (CG2) also sequenced by CG. All these samples were
sequenced using the Complete Genomics sequencing technology at an average of
80� . The CG1 can be found at http://www.completegenomics.com/public-data/
69-Genomes/ and the CG2 at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/
working/20130524_cgi_combined_calls/. On these data sets, we filtered out all
variants with a call rate below 66% and ignored them in all posterior validation
analysis. In both the data sets, we used called SNPs as validations. We found
15,060,295 and 17,399,956 1000GP SNPs overlapping CG1 and CG2, respectively.
In addition, we found 554,886 1000GP indels also in CG2.

In terms of sample overlap with 1000GP, CG1 and CG2 contain 34 and
125 samples, respectively. We used genotypes of these samples to measure
discordance with the 1000GP call sets. As CG genotypes were derived from an
average coverage of 80� , we assume that they are accurate and thus can be
considered as the truth in the validation process. We define the discordance as
being the percentage of these CG genotypes that are miscalled by a software
(Beagle, Thunder or SHAPEIT). We measure both the overall (ALL) discordance
and the discordance at genotypes with at least one non-reference allele (ALT). In all
discordance measures, we systematically exclude all genotypes at SNPs included
in the Omni 2.5 M chips.

We also used CG samples that are not in 1000GP nor related with any samples
in 1000GP to assess the performance of the various call sets when used as reference
panels for imputation. In CG1, we found 20 such samples, and 51 in CG2. To
mimic a standard GWAS, we extracted genotypes at subsets of SNPs in both the
data sets: for CG1, at all SNPs on chromosome 20 also included in the Illumina 1 M
chip for CG1 (set A), and for CG2, at all SNPs on chromosome 10 also included in
the Illumina 1 M (set B) and Illumina Omni 2.5 M (set C) chips. We then imputed
all remaining CG SNP genotypes available using Impute2 (default parameters) and
the various call sets as reference panels. We imputed 315,326 SNPs from set A,
823,570 SNPs and 27,511 indels from set B, and 775,818 SNPs and 27,511 indels
from set C. We defined as isolated, an indel with no other indel in the 50 bp
flanking regions. We found 23,641 (85.9%) isolated indels and 3,870 (14.1%) non-
isolated indels. All these variants were then classified into frequency bins that were
derived from the official release of haplotypes on a per continental group basis as
defined in Supplementary Table 2. Then, for each continental group and frequency
bin separately, we measured the squared Pearson correlation coefficient between
the true (CG derived) and the imputed dosages, ranging from 0 in case of
completely wrong imputation to 1 in the case of a perfect imputation. Note that a
genotype dosage is the expected number of copies of non-reference alleles; being 0,
1 or 2 in the case of a known genotype and ranging from 0 to 2 in the case of an

imputed genotype. Indels in the phase 1 1000GP haplotypes were filtered at 1%
which explains why there are no results for very low-frequency indels in Fig. 2d.
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