24 research outputs found

    The GALEX View of "Boyajian's Star" (KIC 8462852)

    Get PDF
    The enigmatic star KIC 8462852, informally known as "Boyajian's Star", has exhibited unexplained variability from both short timescale (days) dimming events, and years-long fading in the Kepler mission. No single physical mechanism has successfully explained these observations to date. Here we investigate the ultraviolet variability of KIC 8462852 on a range of timescales using data from the GALEX mission that occurred contemporaneously with the Kepler mission. The wide wavelength baseline between the Kepler and GALEX data provides a unique constraint on the nature of the variability. Using 1600 seconds of photon-counting data from four GALEX visits spread over 70 days in 2011, we find no coherent NUV variability in the system on 10-100 second or months timescales. Comparing the integrated flux from these 2011 visits to the 2012 NUV flux published in the GALEX-CAUSE Kepler survey, we find a 3% decrease in brightness for KIC 8462852. We find this level of variability is significant, but not necessarily unusual for stars of similar spectral type in the GALEX data. This decrease coincides with the secular optical fading reported by Montet & Simon (2016). We find the multi-wavelength variability is somewhat inconsistent with typical interstellar dust absorption, but instead favors a RV_V = 5.0 ±\pm 0.9 reddening law potentially from circumstellar dust.Comment: 8 pages, 4 figures, ApJ Accepte

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in 2015 October, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1%-2.5% dips, named Elsie, Celeste, Skara Brae, and Angkor, which persist on timescales from several days to weeks. Our main results so far are as follows: (i) there are no apparent changes of the stellar spectrum or polarization during the dips and (ii) the multiband photometry of the dips shows differential reddening favoring non-gray extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale ≪1 μm, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term secular dimming, which may be caused by independent processes, or probe different regimes of a single process

    GJ 273: On the formation, dynamical evolution, and habitability of a planetary system hosted by an M dwarf at 3.75 parsec

    Get PDF
    Context. Planets orbiting low-mass stars such as M dwarfs are now considered a cornerstone in the search for life-harbouring planets. GJ 273 is a planetary system orbiting an M dwarf only 3.75 pc away, composed of two confirmed planets, GJ 273b and GJ 273c, and two promising candidates, GJ 273d and GJ 273e. Planet GJ 273b resides in the habitable zone. Currently, due to a lack of observed planetary transits, only the minimum masses of the planets are known: Mb sin ib=2.89 M⊕, Mc sin ic=1.18 M⊕, Md sin id=10.80 M⊕, and Me sin ie=9.30 M⊕. Despite being an interesting system, the GJ 273 planetary system is still poorly studied. Aims. We aim at precisely determine the physical parameters of the individual planets, in particular to break the mass–inclination degeneracy to accurately determine the mass of the planets. Moreover, we present thorough characterisation of planet GJ 273b in terms of its potential habitability. Methods. First, we explored the planetary formation and hydration phases of GJ 273 during the first 100 Myr. Secondly, we analysed the stability of the system by considering both the two- and four-planet configurations. We then performed a comparative analysis between GJ 273 and the Solar System, and searched for regions in GJ 273 which may harbour minor bodies in stable orbits, i.e. main asteroid belt and Kuiper belt analogues. Results. From our set of dynamical studies, we obtain that the four-planet configuration of the system allows us to break the mass– inclination degeneracy. From our modelling results, the masses of the planets are unveiled as: 2:89 ≤ Mb ≤ 3:03 M⊕, 1:18 ≤ Mc ≤ 1:24 M⊕, 10:80 ≤ Md ≤ 11:35 M⊕ and 9:30 ≤ Me ≤ 9:70 M⊕. These results point to a system likely composed of an Earth-mass planet, a super-Earth and two mini-Neptunes. From planetary formation models, we determine that GJ 273b was likely an efficient water captor while GJ 273c is probably a dry planet. We found that the system may have several stable regions where minor bodies might reside. Collectively, these results are used to comprehensively discuss the habitability of GJ 273bSpanish Ministry of Science and Education Ramón y Cajal programme ESP2017-87676-2-2 RYC-2012-09913CONICYT- FONDECYT/Chile Postdoctorado 3180405MIT’s Kavli Institut

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process

    A large ground-based observing campaign of the disintegrating planet K2-22b

    Get PDF
    We present 45 ground-based photometric observations of the K2-22 system collected between 2016 December and 2017 May, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets

    The First Post-Kepler Brightness Dips of KIC 8462852

    Full text link
    corecore