2,435 research outputs found

    The Classical Stellar Atmosphere Problem

    Get PDF
    We introduce the classical stellar atmosphere problem and describe in detail its numerical solution. The problem consists of the solution of the radiation transfer equations under the constraints of hydrostatic, radiative and statistical equilibrium (non-LTE). We outline the basic idea of the Accelerated Lambda Iteration (ALI) technique and statistical methods which finally allow the construction of non-LTE model atmospheres considering the influence of millions of metal absorption lines. Some applications of the new models are presented.Comment: accepted for publication in The Journal of Computational and Applied Mathematics, Computational Astrophysics, eds. H. Riffert, K. Werne

    Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS

    Full text link
    For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and < 45 kK, i.e. exceeding those of DB white dwarfs and having lower ones than DO white dwarfs. Therefore, this temperature range was long known as the DB-gap. Only recently, the SDSS provided spectra of several candidate DB-gap stars. First analyses based on model spectra calculated under the assumption of local thermodynamic equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs.Comment: 4 pages, 2 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf

    Planet formation from the ejecta of common envelopes

    Full text link
    The close binary system NN Serpentis must have gone through a common envelope phase before the formation of its white dwarf. During this phase, a substantial amount of mass was lost from the envelope. The recently detected orbits of circumbinary planets are likely inconsistent with planet formation before the mass loss.We explore whether new planets may have formed from the ejecta of the common envelope and derive the expected planetary mass as a function of radius.We employed the Kashi & Soker model to estimate the amount of mass that is retained during the ejection event and inferred the properties of the resulting disk from the conservation of mass and angular momentum. The resulting planetary masses were estimated from models with and without radiative feedback. We show that the observed planetary masses can be reproduced for appropriate model parameters. Photoheating can stabilize the disks in the interior, potentially explaining the observed planetary orbits on scales of a few AU. We compare the expected mass scale of planets for 11 additional systems with observational results and find hints of two populations, one consistent with planet formation from the ejecta of common envelopes and the other a separate population that may have formed earlier. The formation of the observed planets from the ejecta of common envelopes seems feasible. The model proposed here can be tested through refined observations of additional post-common envelope systems. While it appears observationally challenging to distinguish between the accretion on pre-existing planets and their growth from new fragments, it may be possible to further constrain the properties of the protoplanetary disk through additional observations of current planetary candidates and post-common envelope binary systems.Comment: 12 pages, 8 figures, 3 tables. Accepted at A&

    The quest for companions to post-common envelope binaries IV: The 2:1 mean-motion resonance of the planets orbiting NN Serpentis

    Full text link
    We present 69 new mid-eclipse times of the young post-common envelope binary (PCEB) NN Ser, which was previously suggested to possess two circumbinary planets. We have interpreted the observed eclipse-time variations in terms of the light-travel time effect caused by two planets, exhaustively covering the multi-dimensional parameter space by fits in the two binary and ten orbital parameters. We supplemented the fits by stability calculations for all models with an acceptable chi-square. An island of secularly stable 2:1 resonant solutions exists, which coincides with the global chi-square minimum. Our best-fit stable solution yields current orbital periods P_o = 15.47 yr and P_i = 7.65 yr and eccentricities e_o = 0.14 and e_i = 0.22 for the outer (o) and inner (i) planets, respectively. The companions qualify as giant planets, with masses of 7.0 M_Jup and 1.7 M_Jup for the case of orbits coplanar with that of the binary. The two-planet model that starts from the present system parameters has a lifetime greater than 10^8 yr, which significantly exceeds the age of NN Ser of 10^6 yr as a PCEB. The resonance is characterized by libration of the resonant variable Theta_1 and circulation of omega_i-omega_o, the difference between the arguments of periapse of the two planets. No stable non-resonant solutions were found, and the possibility of a 5:2 resonance suggested previously by us is now excluded at the 99.3% confidence level.Comment: 8 pages, 8 figure

    Characterisation of cyclic variability in an optically accessible IC Engine by means of phase-independent POD

    Get PDF
    Investigation of cyclic variability in engine operation has recently received new impulse with the widespread application of advanced numerical and experimental techniques. The present work attempts to shed some light on the existence and nature of correlations between coherent structures dynamics and cyclic variability in IC engines by means of phase-independent Proper Orthogonal Decomposition applied to highly-resolved PIV measurements obtained in an optically accessible, motored engine. Analysis of the conditional means and variances of the reconstruction coefficients reveal interesting patterns in the break-up of coherent structures which are also confirmed by experimental observation and leave room for speculation on the true nature of the flow field at different crank angles. A first attempt has also been carried out to reconstruct missing information from available measurements, with encouraging results: the development of such interpolation/reconstruction technique could obviously have a great impact on the reduction of the cost normally involved in experimental and computational campaigns

    The Extent and Cause of the Pre-White Dwarf Instability Strip

    Get PDF
    One of the least understood aspects of white dwarf evolution is the process by which they are formed. We are aided, however, by the fact that many H- and He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators. Pulsations in PWDs provide a unique opportunity to probe their interiors, which are otherwise inaccesible to direct observation. Until now, however, the nature of the pulsation mechanism, the precise boundaries of the instability strip, and the mass distribution of the PWDs were complete mysteries. These problems must be addressed before we can apply knowledge of pulsating PWDs to improve understanding of white dwarf formation. This paper lays the groundwork for future theoretical investigations of these stars. In recent years, Whole Earth Telescope observations led to determination of mass and luminosity for the majority of the (non-central star) PWD pulsators. With these observations, we identify the common properties and trends PWDs exhibit as a class. We find that pulsators of low mass have higher luminosity, suggesting the range of instability is highly mass-dependent. The observed trend of decreasing periods with decreasing luminosity matches a decrease in the maximum (standing-wave) g-mode period across the instability strip. We show that the red edge can be caused by the lengthening of the driving timescale beyond the maximum sustainable period. This result is general for ionization-based driving mechanisms, and it explains the mass-dependence of the red edge. The observed form of the mass-dependence provides a vital starting point for future theoretical investigations of the driving mechanism. We also show that the blue edge probably remains undetected because of selection effects arising from rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199
    • …
    corecore